Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

The computational approach of designing novel SARS-CoV-2 M pro inhibitors: combined QSAR,

molecular docking, and molecular dynamics simulation techniques

Jian-Bo Tong^{*1,2}, Ding Luo^{1,2}, Hai-Yin Xu^{1,2}, Shuai Bian^{1,2}, Xing Zhang, Xue-Chun Xiao^{1,2}, Jie

Wang^{1,2}

¹ College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an

710021, China

² Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an710021, China

***Corresponding author:** Jian-Bo Tong^{*1,2}; E-mail: jianbotong@aliyun.com;

Table S1: Compound structure and their experimental IC_{50} and pIC_{50} values

Table S2: Experimental and predicted pIC_{50} with residual of training and test sets based on HQSAR 3-4 and Topomer CoMFA model 2.

Table S3: Table S3: Y-randomization test of optimal models.

Table S4: Newly designed compounds and predicted activity

Fig. S1: 2D view of binding conformations and ligand interactions of newly designed compounds at the active site of SARS-CoV-2 M $^{\rm pro}$

Comp.	structure	IC ₅₀ (uM)	p <i>IC</i> ₅₀
1		36	4.444
2		85	4.071

Table S1. Comp	bound structure a	and their experience	rimental IC_{50} an	d p IC_{50} values
----------------	-------------------	----------------------	-----------------------	----------------------

3	250	3.602
4	280	3.553
5	13	4.886
6	24	4.620
7	6.8	5.167
8	2	5.699
9	1.7	5.770

10		2.3	5.638
11		0.92	6.036
12		1.9	5.721
13		0.75	6.125
14		1.2	5.921
15		0.65	6.187
16		1.7	5.770
17	$O_2N \xrightarrow{O} H$	3.4	5.469

18	2.9	5.538
19	1.5	5.824
20	7.5	5.125
21	9.5	5.022
22	1600	2.796
23	1600	2.796
24	260	3.585

25	210	3.678
26	1600	2.796
27	9.5	5.022
28	21.0	4.678
29	43.0	4.367
30	24.0	4.620
31	10.0	5.000

32	14.0	4.854
33	1.95	5.710
34	0.33	6.481
35	8.50	5.071
36	10.68	4.971
37	6.27	5.203
38	0.71	6.149

39	0.24	6.620
40	1.44	5.842
41	1.27	5.896
42	1.50	5.824
43	4.60	5.337
44	4.80	5.319
45	0.74	6.131

46	5.20	5.284
47	1.50	5.824
48	1.30	5.886

Table S2: Experimental and predicted pIC50 with residual of training and test sets based on HQSAR 3-4 and Topomer CoMFA model 2.

and Topon							
	Topomer C	oMFA model	2			HQSAR model 3-6	
No.	Actual pIC ₅₀	Predicted pIC ₅₀	Residual	Frag contri R _a	ment bution R _b	Predicted pIC ₅₀	Residual
1	4.444	4.371	0.073	1.32	-0.39	4.362	0.082
2*	4.071	3.631	0.442	0.57	-0.39	3.947	0.124
3	3.602	3.510	0.092	0.70	-0.63	3.932	-0.33
4	3.553	3.731	-0.178	-0.73	-0.39	3.607	-0.054
5	4.886	4.395	0.491	1.34	-0.39	4.621	0.265
6*	4.620	3.733	0.887	0.68	-0.39	3.744	0.876
7	5.167	4.921	0.246	1.87	-0.39	4.853	0.314
8	5.699	5.754	-0.055	1.34	0.97	5.954	-0.255
9	5.770	5.385	0.385	1.34	0.60	5.405	0.365
10*	5.638	5.910	-0.272	1.87	0.60	5.638	0.000
11	6.036	5.935	0.101	1.89	0.60	6.049	-0.013
12	5.721	5.883	-0.162	1.84	0.60	5.823	-0.102
13*	6.125	5.944	0.181	1.89	0.60	5.862	0.263
14	5.921	5.935	-0.014	1.89	0.60	5.872	0.049
15	6.187	5.939	0.248	1.90	0.60	6.297	-0.11
16*	5.770	5.886	-0.116	1.84	0.60	5.766	0.004
17	5.469	5.883	-0.414	1.84	0.60	5.363	0.106
18	5.538	5.667	-0.129	1.62	0.60	5.554	-0.016
19*	5.824	5.660	0.164	1.62	0.60	5.595	0.229
20	5.125	4.969	0.156	0.93	0.60	5.131	-0.006

21	5.022	5.387	-0.365	1.34	0.60	5.405	-0.383
22*	2.796	2.789	0.007	1.34	-0.39	3.621	-0.825
23	2.796	3.395	-0.599	-0.26	-0.39	2.803	-0.007
24	3.585	3.824	-0.239	0.77	-0.39	3.562	0.023
25*	3.678	4.347	-0.669	1.28	-0.39	3.759	-0.081
26	2.796	3.026	-0.231	-0.04	-0.39	2.853	-0.058
27*	5.022	3.824	1.198	0.77	-0.39	4.526	0.496
28	4.678	5.041	-0.363	1.00	0.60	4.487	0.191
29	4.367	4.374	-0.007	0.33	0.60	4.314	0.053
30	4.620	4.622	-0.002	0.58	0.60	4.714	-0.094
31*	5.000	4.634	0.366	0.59	0.60	4.806	0.194
32	4.854	4.639	0.215	0.60	0.60	4.900	-0.046
33	5.710	5.721	-0.011	0.94	1.33	5.761	-0.051
34*	6.481	5.858	0.623	1.08	1.33	5.743	0.738
35	5.071	5.366	-0.295	0.60	1.33	5.361	-0.29
36	4.971	4.705	0.266	-0.08	1.33	5.001	-0.03
37	5.203	5.301	-0.098	0.52	1.33	5.795	-0.592
38	6.149	6.176	-0.027	1.39	1.33	6.015	0.134
39	6.620	6.058	0.562	1.28	1.33	6.082	0.538
40	5.842	6.141	-0.299	1.37	1.33	5.964	-0.122
41*	5.896	6.265	-0.269	1.38	1.33	6.074	-0.178
42	5.824	5.686	0.138	1.63	0.60	5.772	0.052
43	5.337	5.511	-0.174	1.46	0.60	5.750	-0.413
44	5.319	5.390	-0.071	1.34	0.60	5.313	0.006
45	6.131	5.987	0.144	1.94	0.60	6.140	-0.009
46*	5.284	5.750	-0.506	1.75	0.60	6.050	-0.766
47	5.824	5.928	-0.104	1.88	0.60	5.910	-0.086
48	5.886	5.674	0.212	1.63	0.60	5.864	0.022

[a]: Randomly selected as the test set

Table S3: Y-randomization test of optimal models.

V random Itoration	Topome	r CoMFA 2	HQSAR3-6		
r-random iteration	r^2	q^2	r^2	q^2	
1	0.157	-0.847	0.017	-0.352	
2	0.174	-0.367	0.205	-0.072	
3	0.307	-0.544	0.140	-0.158	
4	0.158	-0.423	0.078	-0.411	
5	0.324	-0.378	0.069	-0.476	
6	0.200	-0.745	0.099	-0.218	
7	0.278	-0.207	0.055	-0.310	
8	0.453	-0.744	0.090	-0.191	
9	0.237	-0.336	0.128	-0.204	
10	0.222	-0.455	0.194	-0.048	
11	0.426	-0.115	0.052	-0.328	

12	0.201	-0.578	0.288	-0.046
13	0.262	-0.639	0.085	-0.256
14	0.351	-0.154	0.025	-0.469
15	0.320	-0.306	0.102	-0.259
16	0.134	-0.521	0.206	0.009
17	0.417	0.0626	0.177	-0.095
18	0.342	-0.288	0.246	-0.175
19	0.231	-0.447	0.209	-0.264
20	0.217	-0.690	0.127	-0.176
Non-Random	0.936	0.738	0.955	0.774

Table S4: Newly designed compounds and predicted activity

Comp.	structure	pIC ₅₀ (Pred) a	pIC ₅₀ (Pred) b
15R _a +1		7.07	7.997
15R _a +2		6.91	7.926
15R _a +3		6.97	5.872
15R _a +4		6.94	7.093

38R _a +5	6.45	7.051
38R _a +6	6.47	6.173
45R _a +1	7.12	7.857
45R _a +2	6.95	7.785
45R _a +3	7.02	5.731
45R _a +4	6.99	7.695

[a]: predicted by Topomer CoMFA model 2; [b]: predicted by HQSAR model 3-4;

MET A:49

Fig S1: 2D view of binding conformations and ligand interactions of newly designed compounds at the active site of SARS-CoV-2 M ^{pro}.