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S1. Material characterization

X-ray diffraction (XRD) of materials were performed on a diffractometer (D/Max-2400, Rigaku) 

advance instrument using Cu Kα radiation (k =1.5418 Å). The morphology and microstructure of the 

materials were tested by field emission scanning electron microscopy (FE-SEM, Carl Zeiss-Ultra Plus, 

Germany) and transmission electron microscopy (TEM, FEI Tecnai G2 F20, USA). The Brunauer-

Emmett-Teller (BET) surface area of the samples was analyzed by nitrogen adsorption-desorption in 

a surface area and porosimetry analyzer (ASAP 2020, Micromeritics, U.S.A.). Raman spectra were 

performed on an inVia Raman spectrometer (Rainie Salt Public Co. Ltd., Britain) with a laser 

wavelength of 514 nm. The wetting property of carbon materials were analyzed and captured by a high 

speed camera, Photron FASTCAM Mini UX100 (Photron USA, Inc.).

S2. Electrochemical measurements

The electrochemical properties of the samples were investigated by cyclic voltammetry (CV) and 

galvanostatic charge/discharge measurements in three-electrode cell and two-electrode configuration 

using a CHI660E electrochemical workstation (Shanghai Chenghua, China). The cycle-life stability 

was performed using computer controlled cycling equipment (LAND CT2001A, Wuhan China). 

Electrochemical impedance spectroscopy (EIS) measurements were performed at the frequency 

ranging from 0.1 Hz to 100k Hz and an impedance amplitude of ±5 mV at open circuit potential.

The gravimetric capacitance from galvanostatic charge/discharge was calculated by using the 

formula of C=IΔt/(mΔV) for the three-electrode system, where I is the charge/discharge current (A) 

and m is the mass (g) of electrode material, Δt is the discharge time and ΔV is the voltage of the 

discharge process.

The specific energy density (E, Wh kg-1) and power density (P, W kg-1) for a supercapacitor device 



can be calculated using the following equations: E=1/2CV2 and P=E/t, where C is the specific 

capacitance of supercapacitor device, V is voltage of discharge process after IR drop in V-t curve, and 

t is the discharge times.

The working electrode was prepared by mixing the carbon active material, super P and 

polyvinylidene fluoride (PVDF) in a mass ratio of 8:1:1 in N-methyl-2-pyrrolidone (NMP) solution to 

forms homogeneous slurry. The slurry was pressed onto nickel foam with a working area of 1.0 and 

dried at 100 oC for 12 h. The total mass loading of the electrode materials about 4 mg/cm2. For a 

supercapacitor device, it should be selected two electrodes with close weights and assembled into the 

sandwich-type cells device symmetrically by using the thin filter paper and 1 mol L-1 Li2SO4 solution 

as the separator and electrolyte, respectively.



Figure S1. The wettability test of (a) LRC, (b) N-LRC, (c) P-LRC and (d) NP-LRC.

Figure S2. (a) XPS spectrum of LRC, N-LRC and P-LRC materials, (b) high-resolution N1s spectrum of N-LRC.



Figure S3. (a-c) CV curves of the LRC, P-LRC and N-LRC materials at various scan rates, (d-f) GCD curves of the 

LRC, P-LRC and N-LRC materials at various current densities.

Figure S4. SEM image of the NP-LRC electrode after the cycle stability test.



Table S1. Elemental analysis, BET surface area, and pore structure characterization parameters of 

carbon materials.

Elemental analysisCarbon 
materials C% N% H%

SBET
a

(m2 g-1)
Db

(nm)
Vtotalc

(cm3 g-1)
LRC 76.43 - 1.31 392.9 3.2 0.18

P-LRC 81.21 - 1.44 1016.8 2.7 0.79

N-LRC 79.46 4.12 1.34 764.3 2.3 0.56

NP-LRC 82.87 4.09 1.29 1257.8 2.2 0.91
aSpecific surface area determined according to the BET (Brunauer-Emmett-Teller) method. 
b Adsorption average pore diameter. 
cTotal pore volume.

Table 2. The capacitance values and BET surface area of NP-LRC materials and the carbon electrode 

materials recently reported in literatures.

Electrode materials
BET surface area 

(m2 g-1)
Electrolyte

Specific capacitance
(current density)

Refs.

peanut shells-based carbon 
(FE/MG-AC-800) 1427.81 1 M Na2SO4

247.28 F g-1

(1 A g-1) [S1]

wheat straw-based carbon
(PBC)

2115 3 M KOH 294  F g-1

(1 A g-1) [S2]

Zanthoxylum Leaves-based 
carbon

1242.7 2 M KOH 196 F g-1 
(0.5 A g-1)

[S3]

Black locust seed dregs-based 
carbon (BDPC)

2010.1  6 M KOH 333 F g-1

(1 A g-1) [S4]

European deciduous trees-based 
carbon 614 1 M H2SO4

24 F g-1

(0.25 A g-1) [S5]

Green-tea wastes-based carbon 1057.8 1 M H2SO4
162 F g-1

(0.5 A g-1) [S6]

Wood powders-based carbon 868.8 6 M KOH 150.1 F g-1

(0.2 A g-1) [S7]

Quinoa-based carbon 2597 6 M KOH 330  F g-1

(1 A g-1) [S8]

NP-LRC 1257.8 6 M KOH
221 F g-1 

(0.5 A g-1)
This work



Table S3 Performances comparison of aqueous symmetric supercapacitors used various carbon 

materials in the references.

Carbon type Electrolyte
Operation voltage 

(V)

E

(Wh kg-1)

P

(W kg-1)
Refs.

Licorice root residues-derived 
nitrogen doped porous carbon 

(NR-LRC)
Li2SO4 (1 M) 1.8 11.7 450

This 
work

Carbon material (CL-700) KOH (6 M) 1.0 7.1 124.9 S9
Graphene quantum dots (GQDs) KOH (6 M) 1.0 9.21 247.75 S10
Porous-hollow carbon nanofibers 

(HCF800)
KOH (6 M) 1.2 12.99 12 K S11

CNTAC
TEABF4/PC

(1 M)
2.5 12.9 100 S12

Hierarchical porous N, O, S-
enriched carbon foam (KNOSC)

Na2SO4 (1 M) 1.8 15.2 36K S13

N, S co-doped porous carbon fibers 
film (PCFF)

KOH (6 M) 1.0 16.35 147.15 S14

3D hierarchical porous carbon 
(GHC-17)

KOH (6 M) 1.0 14.65 27.3K S15

N-containing hierarchical porous 
carbon spheres (HPCSs)

KOH (7 M) 1.0 7.8 6.2K S16

N/S co-doped porous carbon 
nanobowls

KOH (6 M) 1.0 9.6 25 S17

Hierarchical porous carbons 
(HPCs)

NaCl (1 M) 1.5 15.2 751 S18

Nitrogen-rich porous graphene-like 
carbon sheets (NPGCs)

KOH (6 M) 1.0 6.53 28.4K S19

Porous carbon of cicada slough 
(PCCS)

KOH (6 M) 1.0 9.0CL 227 S20
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