Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary information

A Multilayer Microfluidic Paper Coupled with Electrochemical Platform Developed for

Sample Separation and Detection of Dopamine

Wisarut Khamcharoen^a and Weena Siangproh^{a*}

^a Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23,

Wattana, Bangkok 10110, Thailand

*Corresponding author:

E-mail address: weena@g.swu.ac.th, weenasi@hotmail.com

Fig. S1 (a) The preparation of wax-patterned paper (b) drawing of μ PAD coupled with electrochemical detection

Fig. S2 The oxidation currents of 100 μ M DA in PBS pH 7.4 measured by DPV using PGA/SPGE have different concentrations of l-glutamic acid

Fig. S3 The oxidation currents of 100 μ M DA in PBS pH 7.4 measured by DPV using PGA/SPGE have different scan numbers at optimal concentration of 1-glutamic acid

Fig. S4 The illustration of paper-based screen-printed electrodes for electrochemical stagnant analysis

Fig. S5 The oxidation currents of 100 μ M DA in PBS pH 7.4 measured by DPV using a multilayer e μ PAD at different waiting times

Electrode	Technique	LOD (µM)	Linear range (µM)	Ref.
Poly(SDB)/CPE	DPV	0.8	5.0–10, 20–80 and 90–1000	1
AgNPs/rGO/GCE	LSV	5.4	10-800	2
PImox-GO/GCE	DPV	0.63	12–278	3
HNP-PtTi/ GCE	DPV	3.2	4.0–500	4
G-DHE	DPV	0.2	5.0-2000	5
PtNi@MoS2/GCE	DPV	0.1	0.5–150	6
multilayer eµPAD (PGA/SPGE)	DPV	0.41	1.0–200	This work

Table S1 Analytical performance of previous reports compared with the proposed multilayer eµPAD based on electrochemical detection of DA

<u>Abbreviaion</u>

Poly(SDB)- poly(solochrome dark blue), CPE- carbon paste electrode, AgNPs- silver nanoparticles, rGO- reduced graphene oxide, LSV- linear sweep voltammetry, PImox-overoxidized polyimidazole, GO- graphene oxide, HNP- hierarchical nanoporous, G-DHE-graphene–diamond hybrid electrode and PtNi@MoS₂- PtNi bimetallic naoparticles loaded MoS₂ nanosheets.

Fig. S6 The interferences effect of 100 μ M Uric acid, 1 mM glucose, 100 μ M vitamin (B₂ and B₆), 1000 μ g/L BSA, 1 mM Na⁺ and 1 mM Ca²⁺ on the detection of 100 μ M DA in PBS pH 7.4.

References

- K. Reddaiah, M. M. Reddy, P. Raghu and T. M. Reddy, *Colloids Surf B Biointerfaces*, 2013, **106**, 145–150.
- B. Kaur, T. Pandiyan, B. Satpati and R. Srivastava, *Colloids Surf B Biointerfaces*, 2013, 111, 97–106.
- X. Liu, L. Zhang, S. Wei, S. Chen, X. Ou and Q. Lu, *Biosens Bioelectron*, 2014, 57, 232–238.
- 4 D. Zhao, G. Yu, K. Tian and C. Xu, *Biosens Bioelectron*, 2016, **82**, 119–126.

- 5 Q. Yuan, Y. Liu, C. Ye, H. Sun, D. Dai, Q. Wei, G. Lai, T. Wu, A. Yu, L. Fu, K. W. A. Chee and C. T. Lin, *Biosens Bioelectron*, 2018, **111**, 117–123.
- 6 L. Ma, Q. Zhang, C. Wu, Y. Zhang and L. Zeng, *Anal Chim Acta*, 2019, **1055**, 17–25.