Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Supporting Information

Coordination compounds containing 2-pyridylselenium ligands: synthesis, structural characterization, and antibacterial evaluation

Rodrigo Cervo,^a Thaísa R. R. Lopes,^b Adriana R. de Vasconcelos,^b Juliana F. Cargnelutti,^b Ricardo F. Schumacher,^b Bárbara Tirloni,^a Sailer S. dos Santos,^a Ulrich Abram,^c Ernesto S. Lang^a and Roberta Cargnelutti^{a*}

^{b.} Laboratório de Bacteriologia (LABAC), Departamento de Medicina Veterinária Preventiva – CCR/UFSM, Santa Maria, 97105-900, RS, Brazil.

^{c.} Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, D-14195, Berlin, Germany.

* Corresponding author: roberta.cargnelutti@ufsm.br

^{a.} Departamento de Química, CCNE, Universidade Federal de Santa Maria – UFSM, Santa Maria, 97105-900, RS, Brazil.

Table of Contents

Table S1. Crystallographic and structure refinement data for complexes 1, 2, 3, 5 and 6	03
Figure S1. Ellipsoid representations (50% probability) of $[CoCl_2(L)]$ (1) (a) and $[CoBr_2(L)]$ (2)
(b)C)4
Figure S2. Ellipsoid representations (50% probability) of [CuCl ₂ (L)] (3) and ZnCl ₂ (L)] (5))4
Figure S3. Ellipsoid representations (50% probability) of [ReO(apySe) ₂]Cl·DMF (6)	04
Figure S4. ⁷⁷ Se NMR (76 MHz, CDCl₃) spectrum of Ligand L	25
Figure S5. ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectrum of complex 5	25
Figure S6. ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectrum of complex 5	06
Figure S7 . ⁷⁷ Se NMR (76 MHz, DMSO- <i>d</i> ₆) spectrum of complex 5	26
Figure S8. 2D COSY NMR spectrum of complex 5 (DMSO-d ₆)	07
Figure S9. 2D COSY expansion spectrum of complex 5 (DMSO-d ₆))7
Figure S10. 2D HMQC NMR spectrum of complex 5 (DMSO-d ₆)	30
Figure S11. 2D HSQC expansion spectrum of complex 5 (DMSO-d ₆)	30
Figure S12 . ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectrum of (apySe) ₂	09
Figure S13 . ⁷⁷ Se NMR (76 MHz, DMSO- <i>d</i> ₆) spectrum of (apySe) ₂	29
Figure S14. ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectrum of complex 6	10
Figure S15. ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectrum of complex 6	10
Figure S16. ⁷⁷ Se NMR (76 MHz, DMSO- <i>d</i> ₆) spectrum of complex 6	11
Figure S17. 2D COSY NMR spectrum of complex 6 (DMSO-d ₆)	11
Figure S18. 2D COSY expansion spectrum of complex 6 (DMSO-d ₆)	12
Figure S19. 2D HSQC NMR spectrum of complex 6 (DMSO- d_6)	12
Figure S20. 2D HSQC expansion spectrum of complex 6 (DMSO-d ₆)	13
Figure S21. Electronic UV–Vis spectra for L in $H_2O/DMSO$ (4:1, v/v) solution, measured every	1 1
hour (total 5 hours); [] = 1x10 ⁻⁴ M	13
Figure S22. Electronic UV–Vis spectra for 1 in $H_2O/DMSO$ (4:1, v/v) solution, measured every	1 1
hour (total 5 hours); [] = 1x10 ⁻⁴ M	14
Figure S23. Electronic UV–Vis spectra for 2 in $H_2O/DMSO$ (4:1, v/v) solution, measured every	1 1
hour (total 5 hours); [] = 1x10 ⁻⁴ M	14
Figure S24. Electronic UV–Vis spectra for 3 in $H_2O/DMSO$ (4:1, v/v) solution, measured every	1 1
hour (total 5 hours); [] = 1x10 ⁻⁴ M	15
Figure S25. Electronic UV–Vis spectra for 4 in $H_2O/DMSO$ (4:1, v/v) solution, measured every	1 1
hour (total 5 hours); [] = 1x10 ⁻⁴ M	15
Figure S26. Electronic UV–Vis spectra for 5 in $H_2O/DMSO$ (4:1, v/v) solution, measured every	1 1
hour (total 5 hours); [] = 1x10 ⁻⁴ M	16
Figure S27. Electronic UV–Vis spectra for 6 in $H_2O/DMSO$ (4:1, v/v) solution, measured every	' 1
hour (total 5 hours); [] = 1x10 ⁻⁴ M	16

Complex	1	2	3	5	6
Formula	$C_{11}H_{11}CI_2CoN_3Se$	$C_{11}H_{11}Br_2CoN_3Se$	$C_{11}H_{11}CI_2CuN_3Se$	$C_{11}H_{11}Cl_2N_3SeZn$	$C_{10}H_{10}N_4OReSe_2Cl,C_3H_7NO$
CCDC n°	2075668	2075669	2075670	2075671	2075672
F.W. (g·mol⁻¹)	394.02	482.94	398.63	400.46	654.89
Crystal system	Triclinic	Monoclinic	Orthorhombic	Triclinic	Orthorhombic
Space group	P-1	P21/n	Pna21	<i>P</i> -1	Pbca
a (Å)	7.6910(4)	8.3309(6)	13.8873(8)	7.6948(8)	7.0855(16)
b (Å)	7.7691(4)	12.1666(9)	12.4918(7)	7.7787(8)	16.597(5)
c (Å)	12.7167(6)	14.2649(12)	7.9670(4)	12.7007(14)	31.064(9)
α (°)	97.9940(10)	90	90	98.027(3)	90
β(°)	91.522(2)	93.019(3)	90	91.224(3)	90
γ (°)	112.2890(10)	90	90	112.402(3)	90
Т (К)	296(2)	296(2)	295(2)	296(2)	100(2)
V (ų)	693.63(6)	1443.87(19)	1382.09(13)	693.64(13)	3653.2(17)
Z	2	4	4	2	8
r _{calc.} (g⋅cm ⁻³)	1.887	2.222	1.916	1.920	2.381
μ (mm ⁻¹)	2.219	4.907	2.413	2.507	10.801
F(000)	386	916	780	392	2448
Collected reflections	55879	19972	41077	10908	44575
Independent reflections [<i>R</i> _{int}]	4225 [0.0427]	4433 [0.1132]	4120 [0.0578]	2690 [0.0475]	9869 [0.0361]
$R_1\left[I>2\sigma(I)\right]$	0.0394	0.0491	0.0361	0.0493	0.0189
$wR_2[I > 2\sigma(I)]$	0.0937	0.0746	0.0815	0.1082	0.0374
R1 (all data) ^[a]	0.0499	0.1199	0.0505	0.0588	0.0241
wR_2 (all data) ^[b]	0.0980	0.0898	0.0872	0.1146	0.0400
GOOF on F ²	1.174	0.998	1.045	1.086	1.166
Largest diff. peak and hole (e.Å ⁻³)	0.703 and -0.565	0.535 and -0.579	0.403 and -0.451	0.590 and -0.382	0.538 and -0.917

 Table S1. Crystallographic and structure refinement data for complexes 1, 2, 3, 5 and 6.

 ${}^{[a]}R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|; {}^{[b]}wR_2 = \{\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\}^{1/2}$

Figure S1. Ellipsoid representations (50% probability) of [CoCl₂(L)] (1) (a) and [CoBr₂(L)] (2) (b).

Figure S2. Ellipsoid representations (50% probability) of [CuCl₂(L)] (3) (a) and [ZnCl₂(L)] (5) (b).

Figure S3. Ellipsoid representations (50% probability) of [ReO(apySe)₂]Cl·DMF (6).

Figure S4. ⁷⁷Se NMR (76 MHz, CDCl₃) spectrum of Ligand L.

Figure S5. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of complex **5**.

Figure S6. ¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of complex 5.

Figure S7. ⁷⁷Se NMR (76 MHz, DMSO- d_6) spectrum of complex 5.

Figure S8. 2D COSY NMR spectrum of complex 5 (DMSO-d₆).

Figure S9. 2D COSY expansion spectrum of complex 5 (DMSO- d_6).

Figure S10. 2D HMQC NMR spectrum of complex 5 (DMSO-d₆).

Figure S11. 2D HMQC expansion spectrum of complex **5** (DMSO- d_6).

Figure S12. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of (apySe)₂.

Figure S13. ⁷⁷Se NMR (76 MHz, DMSO-*d*₆) spectrum of (apySe)₂.

Figure S14. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of complex **6**.

Figure S15. ¹³C NMR (100 MHz, DMSO- d_6) spectrum of complex **6**.

Figure S16. ⁷⁷Se NMR (76 MHz, DMSO-*d*₆) spectrum of complex **6**.

Figure S17. 2D COSY NMR spectrum of complex **6** (DMSO- d_6).

Figure S18. 2D COSY expansion spectrum of complex **6** (DMSO- d_6).

Figure S19. 2D HSQC NMR spectrum of complex 6 (DMSO- d_6).

Figure S20. 2D HSQC expansion spectrum of complex 6 (DMSO- d_6).

Figure S21. Electronic UV–Vis spectra for L in $H_2O/DMSO$ (4:1, v/v) solution, measured every 1 hour (total 5 hours); [] = 1x10⁻⁴ M.

Figure S22. Electronic UV–Vis spectra for **1** in H₂O/DMSO (4:1, v/v) solution, measured every 1 hour (total 5 hours); [] = 1×10^{-4} M.

Figure S23. Electronic UV–Vis spectra for **2** in H₂O/DMSO (4:1, v/v) solution, measured every 1 hour (total 5 hours); [] = 1×10^{-4} M.

Figure S24. Electronic UV–Vis spectra for **3** in H₂O/DMSO (4:1, v/v) solution, measured every 1 hour (total 5 hours); [] = 1×10^{-4} M.

Figure S25. Electronic UV–Vis spectra for **4** in H₂O/DMSO (4:1, v/v) solution, measured every 1 hour (total 5 hours); [] = 1×10^{-4} M.

Figure S26. Electronic UV–Vis spectra for **5** in H₂O/DMSO (4:1, v/v) solution, measured every 1 hour (total 5 hours); [] = 1×10^{-4} M.

Figure S27. Electronic UV–Vis spectra for **6** in $H_2O/DMSO$ (4:1, v/v) solution, measured every 1 hour (total 5 hours); [] = $1x10^{-4}$ M.