Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Dansyl-NA3 conjugates for glycoprotein detection through fluorescent tagging and native gel electrophoresis

(SUPPORTING INFORMATION)

Mojmír Suchý,^{1,2} Tara Sabloff,¹ Alexia Kirby,^{1,2,3} Erin E. Mulvihill^{2,4} and Adam J. Shuhendler^{1,2,3}

¹Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada

²University of Ottawa Heart Institute, Ottawa, Ontario, Canada

³Department of Biology, University of Ottawa, Ottawa, Ontario, Canada

⁴Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada

CONTENT

Detailed NMR spectroscopic characterization of compounds 1-4, 6, 7 and 14	3
Fluorescence spectra associated with the compounds 1-4, 7 and 14	.36
Stability of compounds 1 and 2 upon extended storage at low temperature	.40

Incubation of compound 2 with native and oxidized fetuin	41
Limit of glycoprotein detection by tagging with compound 2	42

Figure SI1 ¹H NMR spectrum of 5-azidoisatin (6) in DMSO-D₆, full view.

Figure SI2 ¹H NMR spectrum of 5-azidoisatin (6) in DMSO-D₆, expanded view.

Figure SI3 ¹³C NMR spectrum of 5-azidoisatin (6) in DMSO-D₆, full view.

Figure SI4 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) isatin 4 in DMSO-D₆, full view.

Figure SI5 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) isatin 4 in DMSO-D₆, expanded view 1.

Figure SI6 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) isatin 4 in DMSO-D₆, expanded view 2.

Figure SI7 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) isatin 4 in DMSO-D₆, expanded view 3.

Figure SI8 ¹³C NMR spectrum of 5-(*N*-dansyl-clicked) isatin 4 in DMSO-D₆, full view.

Figure SI9 ¹³C NMR spectrum of 5-(*N*-dansyl-clicked) isatin **4** in DMSO-D₆, expanded view.

Figure SI10 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) anthranilic acid **3** in DMSO-D₆, full view.

Figure SI11 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) anthranilic acid **3** in DMSO-D₆, expanded view 1.

Figure SI12 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) anthranilic acid **3** in DMSO-D₆, expanded view 2.

Figure SI13 ¹³C NMR spectrum of 5-(*N*-dansyl-clicked) anthranilic acid **3** in DMSO-D₆, full view.

Figure SI14 ¹³C NMR spectrum of 5-(*N*-dansyl-clicked) anthranilic acid **3** in DMSO-D₆, expanded view 1.

Figure SI15 ¹³C NMR spectrum of 5-(*N*-dansyl-clicked) anthranilic acid **3** in DMSO-D₆, expanded view 2.

Figure SI16 ¹³C NMR spectrum of 5-(*N*-dansyl-clicked) anthranilic acid **3** in DMSO-D₆, expanded view 3.

18

Figure SI17 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) *N*-aminoanthranilic acid **1** in DMSO-D₆, full view.

Figure SI18 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) *N*-aminoanthranilic acid 1 in DMSO-D₆, expanded view 1.

Figure SI19 ¹H NMR spectrum of 5-(*N*-dansyl-clicked) *N*-aminoanthranilic acid 1 in DMSO-D₆, expanded view 2.

Figure SI20¹⁹F NMR spectrum of 5-(*N*-dansyl-clicked) *N*-aminoanthranilic acid 1 in DMSO-D₆, full view

Figure SI21 ¹H NMR spectrum of 5-(*N*-dansylamino)-isatin (7) in DMSO-D₆, full view.

Figure SI22 ¹H NMR spectrum of 5-(*N*-dansylamino)-isatin (7) in DMSO-D₆, expanded view.

Figure SI23 ¹³C NMR spectrum of 5-(*N*-dansylamino)-isatin (7) in DMSO-D₆, full view.

Figure SI24 ¹³C NMR spectrum of 5-(*N*-dansylamino)-isatin (7) in DMSO-D₆, expanded view.

Figure SI25 ¹H NMR spectrum of 5-(*N*-dansylamino)-anthranilic acid (14) in DMSO-D₆, full view. Minor signal at 5.75 ppm is associated with a small amount of dichloromethane in the sample.

Figure SI26 ¹H NMR spectrum of 5-(*N*-dansylamino)-anthranilic acid (14) in DMSO-D₆, expanded view.

Figure SI27 ¹³C NMR spectrum of 5-(*N*-dansylamino)-anthranilic acid (14) in DMSO-D₆, full view. Minor signal at 48.5 ppm is associated with a small amount of methanol in the sample.

Figure SI28 ¹³C NMR spectrum of 5-(*N*-dansylamino)-anthranilic acid (14) in DMSO-D₆, expanded view.

Figure SI29 ¹H NMR spectrum of 5-(*N*-dansylamino)-*N*-aminoanthranilic acid (2) in DMSO-D₆, full view.

Figure SI30 ¹H NMR spectrum of 5-(*N*-dansylamino)-*N*-aminoanthranilic acid (2) in DMSO-D₆, expanded view.

Figure SI31 ¹³C NMR spectrum of 5-(*N*-dansylamino)-*N*-aminoanthranilic acid (2) in DMSO-D₆, full view.

Figure SI32 ¹³C NMR spectrum of 5-(*N*-dansylamino)-*N*-aminoanthranilic acid (2) in DMSO-D₆, expanded view.

Figure SI33 ¹⁹F NMR spectrum of 5-(*N*-dansylamino)-*N*-aminoanthranilic acid (2) in DMSO-D₆, full view.

Figure SI34 Fluorescence spectrum of 5-(*N*-dansyl-clicked) isatin **4** in phosphate buffered saline (PBS) containing 5% DMSO.

Figure SI35 Fluorescence spectrum of 5-(*N*-dansyl-clicked) antranilic acid **3** in phosphate buffered saline (PBS) containing 5% DMSO.

Figure SI36 Fluorescence spectrum of 5-(*N*-dansyl-clicked) *N*-aminoantranilic acid **1** in phosphate buffered saline (PBS) containing 5% DMSO.

Figure SI37 Fluorescence spectrum of 5-(*N*-dansylamino)-isatin (7) in phosphate buffered saline (PBS) containing 5% DMSO.

Figure SI38 Fluorescence spectrum of 5-(*N*-dansylamino)-anthranilic acid (14) in phosphate buffered saline (PBS) containing 5% DMSO.

Figure SI39 Fluorescence spectrum of 5-(*N*-dansylamino)-*N*-aminoanthranilic acid (2) in phosphate buffered saline (PBS) containing 5% DMSO.

N-(Dansyl)propargylamine

Figure SI40 Fluorescence spectrum of *N*-(Dansyl)-propargylamine (6) in phosphate buffered saline (PBS) containing 5% DMSO.

Figure SI41 HPLC trace (Method B) of 5-(*N*-dansyl-clicked) *N*-aminoantranilic acid 1 ($t_R \sim 13$ min) upon storing for 12 months at -20 °C.

Figure SI42 HPLC trace (Method B) of 5-(*N*-dansylamino)-*N*-aminoantranilic acid (2, $t_R \sim 14$ min) upon storing for 12 months at -20 °C. Note significantly increased stability compared to compound 1.

Figure SI43 Emission spectra of dansyl-NA³ (2) with native (A) or oxidized (B) fetuin. Total solution volume was 1 mL after addition of dansyl-NA³ and indicated volume of protein solution, and excitation was set to 339 nm.

Figure SI44 The limit of detection of glycoprotein identification following oxidation and tagging with compound **2**. The visualization of a native protein gel was performed by Coomassie staining (*top*) and fluorescence imaging (*bottom*). A serially diluted fetuin sample was evaluated, resulting in the final protein amounts indicated above the respective lanes; the limit of detection is ~ 18 ng of protein.