Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Gentrie National de la Recherche Scientifique 2021

NJC

Band alignment of Zr2CO2/MoS2 heterostructure under electric field

Journal:	New Journal of Chemistry
Manuscript ID	NJ-ART-05-2021-002440.R1
Article Type:	Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Chen, Zhangze ; Hebei University of Technology, school of Science Ma, Xinguo; Hubei University of Technology Hu, Jisong; Huazhong University of Science and Technology Wan, Fengda; Hebei University of Technology, Xu, Peng; Hubei University of Technology, School of Science Guoyu, Wang; Hebei University of Technology Mei, Wang; Hebei University of Technology Deng, Shuiquan; Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Huang, Chuyun; Hubei University of Technology,

New Journal of Chemistry

N. IC. New Journal of Chemistry

A journal for new directions in chemistry

Guidelines for Referees

Thank you very much for agreeing to review this manuscript for New Journal of Chemistry.

NJC (New Journal of Chemistry) is a broad-based primary journal encompassing all branches of chemistry and its sub-disciplines. It contains full research articles, communications, perspectives and focus articles.

NJC's Impact Factor is 3.288 (2019 Journal Citation Reports®)

The following manuscript has been submitted for consideration as a

PAPER

Papers report a complete study that leads to new understanding or gives new insight into the subject under investigation. If preliminary results have been published in a communication, a subsequent full paper should include additional results that justify another publication.

We ask referees to recommend only the most significant work for publication in NJC. When making your recommendation please:

- **Comment on** the originality, importance, impact and scientific reliability of the work
- Note that routine or incremental work should not be recommended for publication.
- **Contact the Editor** if there is any conflict of interest, if the work has been previously published or if there is a significant part of the work which you are not able to referee with confidence.

Best regards,

Professor Jean-François Gérard Editor-in-Chief, NJC

Dr Andrew Shore Executive Editor, NJC Contact us

ROYAL SOCIE OF CHEMIS

Please visit our reviewer hub for further details of our processes, policies and reviewer responsibilities as well as guidance on how to review, or click the links below.

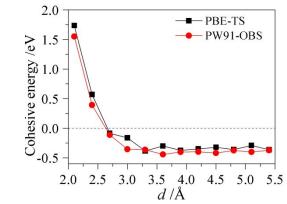
What to do when you review

Reviewer responsibilities

policies

Process &

Band alignment of Zr₂CO₂/MoS₂ heterostructure under electric field


Zhangze Chen,^a Xinguo Ma,^{*a} Jisong Hu,^b Fengda Wan,^a Peng Xu,^a Guoyu Wang,^a Mei Wang,^a Shuiquan Deng^{*c} and Chuyun Huang^a

^a School of Science, Hubei University of Technology, Wuhan 430068, China. E-mail: maxg2013@sohu.com

^b School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China. E-mail: jisong.hu@outlook.com

^c Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou 350002, China. E-mail: sdeng@fjirsm.ac.cn

1. Cohesive energies of Ti₂CO₂/MoS₂ heterostructures

Figure S1. Cohesive energies of Ti₂CO₂/MoS₂ heterostructures with different interlayer spacing using PBE-TS and PW91-OBS.

2. Energy band structure of MoS₂

The state-of-the-art hybrid DFT approach based on the Heyd-Scuseria-Ernzerhof functional (HSE06) was used to calculate the electronic structures of MoS_2 after geometric optimization. In the default hybrid functional HSE06, the screening parameter μ and the mixing parameter α are set as 0.21 Å⁻¹ and 0.25, respectively. And norm-conserving pseudopotentials were used for all-electron HSE06 calculations. The calculated band gap of monolayer MoS_2 is 2.29 eV at the high symmetry K point, which is slightly larger than the experimental band gap of about 1.80 eV.

Page 3 of 5

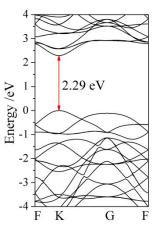
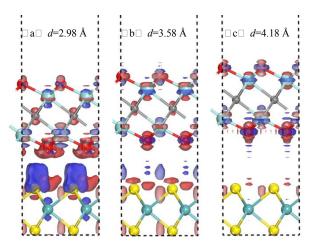


Figure S2. Energy band structure of monolayer MoS₂ using hybrid functional HSE06.

References

- J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215.
- (2) J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Optimized and Transferable Nonlocal Separable Ab Initio Pseudopotentials. *Phys. Rev. B* 1993, 47, 4174–4180.

(3) K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically Thin MoS₂: A New Direct-Gap Semiconductor. *Phys. Rev. Lett.* 2010, **105**, 2–5.


3. Definition of charge density difference

The charge density difference is defined as

$$\Delta \rho = \rho_{Zr_2CO_2/MoS_2} - \rho_{Zr_2CO_2} - \rho_{MoS_2}$$
(S1)

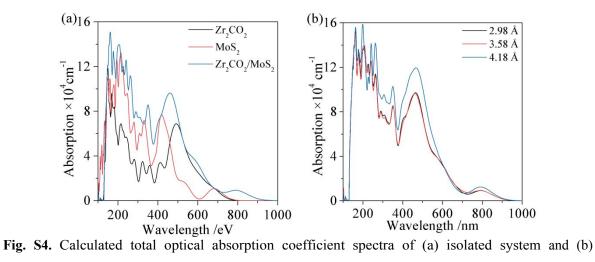
where $\rho_{Zr_2CO_2/MoS_2}$, $\rho_{Zr_2CO_2}$ and ρ_{MoS_2} represent the charge densities of Zr_2CO_2/MoS_2 heterostructures, isolated Zr_2CO_2 and MoS_2 layers, respectively. Namely, the charge density difference can be obtained by subtracting the electronic charge density of Zr_2CO_2/MoS_2 heterostructure from those of the corresponding isolated Zr_2CO_2 and MoS_2 layers, respectively.

4. The stereo charge density differences of Zr₂CO₂/MoS₂ heterostructures

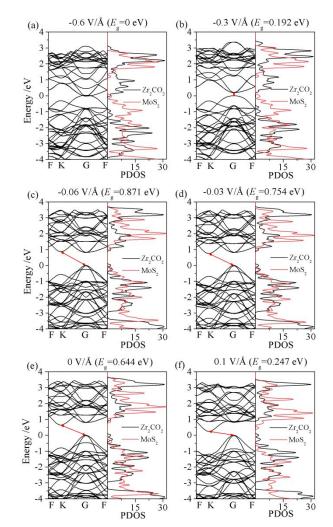
Figure S3. The stereo charge density differences of Zr_2CO_2/MoS_2 heterostructures for three different interlayer spacings using PBE-TS, in which red and blue isosurfaces denote charge augmentation and diminution in the space, respectively. The isovalue of 0.0005 e/Å⁻³ is chosen to plot the isosurface.

5. Definition of CB and VB edge potentials

The band edge energies of CB and VB of MoS_2 and Zr_2CO_2 from electronegativity and BG of semiconductor are defined as


$$E_{\rm VB} = \chi + 0.5E_{\rm g} + E_{\rm e} \tag{S2}$$

$$E_{\rm CB} = E_{\rm VB} - E_{\rm g} \tag{S3}$$


where χ is the average absolute electronegativity of semiconductor. E_e is the energy of free

electron on the hydrogen scale (4.5 eV). And E_{CB} , E_{VB} , E_g are the band edge energies of the CB, VB and BG of semiconductor, respectively.

6. Optical absorption coefficient spectra

Zr₂CO₂/MoS₂ heterostructure with different interlayer spacings using PBE-TS.

7. Energy band structures of Zr₂CO₂/MoS₂ heterostructures under the E_{field}

Figure S5. Energy band structures of Zr_2CO_2/MoS_2 heterostructures with different E_{field} .