Manuscript ID NJ-ART-05-2021-002480

Efficient removal of Pb(II) and Cr(VI) from acidic wastewater by porous thiophosphoryl polyethyleneimine

Junhua Sun^a, Guoxin Sun^{a,b}, Xiuxian Zhao^b, Heng Zhao^a, Zhongjiang Yang^a, Liangguo Yan^c, Xuchuan Jiang^{b,*}, Yu Cui^{a,*}

^a School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, PR China

^b Institute for Smart Materials & Engineering, University of Jinan, No. 336
 Nanxinzhuang West Road, 250022 Jinan, PR China

^c School of Water Conservancy and Environment, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, PR China

* Corresponding author: E-mail: <u>chm_cuiy@ujn.edu.cn (Y. Cui)</u>, <u>ism_jiangxc@ujn.edu.cn</u>

(X.C. Jiang)

Fig. S1 EDS mapping images of the adsorbent.

Fig. S2 N_2 adsorption-desorption isotherms of TPEI (inset: the corresponding pore size distribution curves).

Fig. S3 Adsorption isotherms of Pb(II) and Cr(VI) at different temperatures.

Fig. S4 Influence of competitive ions on Pb(II) (a) and Cr(VI) (b) adsorption.

Fig. S5 The reusability of TPEI for removal of Pb(II) (a) and Cr(VI) (b).

Elt.	Line	Intensity (c/s)	Conc.	Units	Error 2-sig	MDL 3-sig	
С	Ka	60.50	39.615	wt.%	2.161	1.685	
N	Ка	22.85	29.651	wt.%	2.730	2.332	
Р	Ка	186.17	15.955	wt.%	0.460	0.260	
S	Ка	148.36	14.779	wt.%	0.481	0.286	
			100.000	Wt.%			Total

Table S1. EDS elemental analysis of the adsorbent.

Table S2. Related parameters from kinetics equation.

Metal	C_0	Q _{exp}	Pseudo-first-order model		Pseudo-second-order model			
ion	(ppm)	(mg/g)	$K_1(min^-)$	Q_{cal}	R ²	$K_2(g/mg/min)$	Q _{cal}	\mathbb{R}^2
			1)	(mg/g)			(mg/g)	
Pb(I)	100	95.50	0.1511	33.5575	0.8062	0.0115	97.1817	0.9998
Cr(VI)	100	97.90	0.1790	7.8321	0.8441	0.0565	98.3284	0.9999

Table S3. Related parameters from isotherm equation.

Metal ion	Temperature	Langmuir isotherm			Freundlich isotherm			
	(°C)	$Q_{max}(mg/g)$	K_{L}	R_L^2	$K_{\rm F}$	n	R_F^2	
			(L/mg)		(mg/g)			
	15 °C	389.10	0.0485	0.9982	87.50	3.9936	0.8274	
Pb(II)	25 °C	425.53	0.0530	0.9976	94.06	3.8730	0.8394	
	35 °C	462.96	0.0604	0.9972	103.66	3.8270	0.9023	
	15 °C	193.80	0.8012	0.9997	131.72	9.7380	0.9272	
Cr(VI)	25 °C	196.85	0.7937	0.9993	132.17	9.3397	0.9320	
	35 °C	200.80	0.9920	0.9995	137.49	9.3861	0.9394	

Adsorbents	Adsorption	Equilibrium	pН	Referees
	capacity (mg/g)	time (min)		
UiO-66-RSA	189.8	~180	4	[32]
Magnetic polyethyleneimine	96.6	60	6	[33]
lignin				
TEPA modified chitosan	228.311	50	5	[34]
/CoFe ₂ O ₄ particles				
CeO ₂ -MoS ₂ hybrid magnetic	263.6	180	4	[35]
biochar				
Fe-Mn-S@HCS	181.5	600	7	[36]
Cotton fiber functionalized with	123.46	120	5	[37]
tetraethylenepentamine and				
chitosan				
EDTA functionalized chitosan/	138.41	170	5	[38]
polyacrylamide hydrogel				
Spherical PVA/ATP composites	45.87	720	5	[39]
PVA/PAA nanofibers	159	120	5	[40]
CPEI	1.01	/	3	[20]
CPEID	452.49	40	7	[21]
TPEI	421.9	25	3	This work

Table S4. Comparison of the adsorption capacity, equilibrium time and pH of TPEI with other

 adsorbents for Pb(II).

Adsorbents	Adsorption	Equilibrium	pН	Referees
	capacity (mg/g)	time (min)		
Chitosan crosslinked modified silicon	28.88	240	5~6	[41]
material				
Modified chitosan gel	83.33	100	3	[42]
CYPH@IL101/chitosan capsule	104.38	> 960	3	[43]
Chitosan/NiFe ₂ O ₄ (CNF)				
nanocomposites	31.523	120	2	[44]
PD-Fe ₃ O ₄ @CCS	129.03	75	3	[45]
(CPC)-modified montmorillonite	43.84	60	2	[46]
Mts-APTES/GO-OA interstratified	44.25	30	3	[47]
composites				
Wool keratin/PET composite	75.86	720	3	[48]
nanofiber membrane				
Magnetic phoenix tree leaves-derived	55.0	1440	2	[49]
biochar composite				
CPEI	1.43	/	3	[20]
TPEI	191.04	10	2	This work

 Table S5. Comparison of the adsorption capacity, equilibrium time and pH of TPEI with other

 adsorbents for Cr(VI).