A series of asymmetric and symmetric porphyrin derivatives: one-pot synthesis, nonlinear optical and optical limiting properties

Changjiang Bao, a Yanwei Li, *a Yanhui Li, a Zhenjun Si, a Yanru Zhang, a

Changshun Chen,^a Lei Wang,^a Qian Duan*^{ab}

^aSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
^b Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, China

Correspondence E-mail: liyanwei@cust.edu.cn; duanqian88@hotmail.com

Fig. S1 One-pot synthesis of asymmetric and symmetric porphyrin derivatives (I-VI).

	X	У	Z	U(eq)
C(1)	-695(4)	4323(2)	3291(2)	29(1)
C(2)	954(3)	3592(2)	3624(2)	23(1)
C(3)	3111(3)	3973(2)	4047(2)	26(1)
C(4)	4602(3)	3266(2)	4324(2)	25(1)
C(5)	3966(3)	2167(2)	4184(2)	22(1)
C(6)	1798(3)	1790(2)	3763(2)	26(1)
C(7)	306(3)	2496(2)	3481(2)	28(1)
C(8)	5622(3)	1417(2)	4449(2)	22(1)
C(9)	6833(3)	1527(2)	5534(2)	23(1)
C(10)	6315(4)	2210(2)	6425(2)	29(1)
C(11)	7809(4)	2131(2)	7328(2)	29(1)
C(12)	9247(3)	1400(2)	6993(2)	23(1)
C(13)	11077(3)	1145(2)	7712(2)	23(1)
C(14)	11560(4)	1648(2)	8881(2)	28(1)
C(15)	10160(4)	1447(2)	9533(2)	37(1)
C(16)	10604(5)	1950(3)	10606(2)	48(1)
C(17)	12453(5)	2642(3)	11040(2)	52(1)
C(18)	13874(5)	2843(3)	10407(2)	54(1)
C(19)	13427(4)	2347(2)	9330(2)	41(1)
C(20)	5950(3)	718(2)	3572(2)	22(1)
C(21)	4874(3)	644(2)	2450(2)	29(1)
C(22)	5789(3)	-70(2)	1855(2)	30(1)
C(23)	7475(3)	-462(2)	2584(2)	23(1)
C(24)	-1516(4)	6105(2)	3414(2)	44(1)
N(1)	8605(3)	1029(1)	5898(1)	22(1)
N(2)	7498(3)	22(1)	3620(1)	21(1)
O(1)	9(3)	5352(1)	3705(1)	37(1)
O(2)	-2469(3)	4023(2)	2728(2)	50(1)
O(3)	8660(19)	4630(5)	9177(6)	379(7)

Table S1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(1)-O(2)	1.201(3)
C(1)-O(1)	1.336(3)
C(1)-C(2)	1.491(3)
C(2)-C(3)	1.386(3)
C(2)-C(7)	1.388(3)
C(3)-C(4)	1.384(3)
C(3)-H(3)	0.9300
C(4)-C(5)	1.391(3)
C(4)-H(4)	0.9300
C(5)-C(6)	1.392(3)
C(5)-C(8)	1.496(3)
C(6)-C(7)	1.385(3)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-C(20)	1.396(3)
C(8)-C(9)	1.408(3)
C(9)-N(1)	1.367(3)
C(9)-C(10)	1.450(3)
C(10)-C(11)	1.344(3)
C(10)-H(10)	0.9300
C(11)-C(12)	1.451(3)
C(11)-H(11)	0.9300
C(12)-N(1)	1.369(3)
C(12)-C(13)	1.407(3)
C(13)-C(23)#1	1.399(3)
C(13)-C(14)	1.493(3)
C(14)-C(19)	1.387(3)
C(14)-C(15)	1.388(3)
C(15)-C(16)	1.385(3)
C(15)-H(15)	0.9300
C(16)-C(17)	1.371(4)
C(16)-H(16)	0.9300
C(17)-C(18)	1.379(5)
C(17)-H(17)	0.9300
C(18)-C(19)	1.386(4)
C(18)-H(18)	0.9300
C(19)-H(19)	0.9300
C(20)-N(2)	1.378(2)
C(20)-C(21)	1.429(3)
C(21)-C(22)	1.357(3)
C(21)-H(21)	0.9300

Table S2. Bond lengths [Å] and angles [deg].

C(22)-C(23)	1.428(3)
C(22)-H(22)	0.9300
C(23)-N(2)	1.376(3)
C(23)-C(13)#1	1.399(3)
C(24)-O(1)	1.446(3)
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
O(3)-H(3B)	0.976(9)
O(3)-H(3A)	1.054(9)
O(2)-C(1)-O(1)	123.5(2)
O(2)-C(1)-C(2)	124.1(2)
O(1)-C(1)-C(2)	112.38(19)
C(3)-C(2)-C(7)	119.42(18)
C(3)-C(2)-C(1)	121.9(2)
C(7)-C(2)-C(1)	118.65(19)
C(4)-C(3)-C(2)	120.2(2)
C(4)-C(3)-H(3)	119.9
C(2)-C(3)-H(3)	119.9
C(3)-C(4)-C(5)	120.74(19)
C(3)-C(4)-H(4)	119.6
C(5)-C(4)-H(4)	119.6
C(4)-C(5)-C(6)	118.79(18)
C(4)-C(5)-C(8)	119.65(18)
C(6)-C(5)-C(8)	121.53(19)
C(7)-C(6)-C(5)	120.5(2)
C(7)-C(6)-H(6)	119.7
C(5)-C(6)-H(6)	119.7
C(6)-C(7)-C(2)	120.3(2)
C(6)-C(7)-H(7)	119.8
C(2)-C(7)-H(7)	119.8
C(20)-C(8)-C(9)	125.34(18)
C(20)-C(8)-C(5)	116.46(17)
C(9)-C(8)-C(5)	117.99(18)
N(1)-C(9)-C(8)	126.18(19)
N(1)-C(9)-C(10)	111.04(18)
C(8)-C(9)-C(10)	122.78(18)
C(11)-C(10)-C(9)	106.50(19)
C(11)-C(10)-H(10)	126.8
C(9)-C(10)-H(10)	126.8
C(10)-C(11)-C(12)	106.62(19)
C(10)-C(11)-H(11)	126.7
C(12)-C(11)-H(11)	126.7

N(1)-C(12)-C(13)	125.71(18)
N(1)-C(12)-C(11)	110.82(17)
C(13)-C(12)-C(11)	123.45(19)
C(23)#1-C(13)-C(12)	125.17(19)
C(23)#1-C(13)-C(14)	116.52(18)
C(12)-C(13)-C(14)	118.31(18)
C(19)-C(14)-C(15)	118.7(2)
C(19)-C(14)-C(13)	119.8(2)
C(15)-C(14)-C(13)	121.4(2)
C(16)-C(15)-C(14)	120.5(3)
C(16)-C(15)-H(15)	119.8
C(14)-C(15)-H(15)	119.8
C(17)-C(16)-C(15)	120.3(3)
C(17)-C(16)-H(16)	119.9
C(15)-C(16)-H(16)	119.9
C(16)-C(17)-C(18)	120.0(2)
С(16)-С(17)-Н(17)	120.0
C(18)-C(17)-H(17)	120.0
C(17)-C(18)-C(19)	119.9(3)
C(17)-C(18)-H(18)	120.0
C(19)-C(18)-H(18)	120.0
C(18)-C(19)-C(14)	120.6(3)
С(18)-С(19)-Н(19)	119.7
С(14)-С(19)-Н(19)	119.7
N(2)-C(20)-C(8)	126.04(18)
N(2)-C(20)-C(21)	106.87(18)
C(8)-C(20)-C(21)	126.93(18)
C(22)-C(21)-C(20)	108.20(18)
C(22)-C(21)-H(21)	125.9
C(20)-C(21)-H(21)	125.9
C(21)-C(22)-C(23)	108.28(19)
C(21)-C(22)-H(22)	125.9
C(23)-C(22)-H(22)	125.9
N(2)-C(23)-C(13)#1	126.71(18)
N(2)-C(23)-C(22)	106.94(18)
C(13)#1-C(23)-C(22)	126.20(19)
O(1)-C(24)-H(24A)	109.5
O(1)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
O(1)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(9)-N(1)-C(12)	105.00(16)
C(23)-N(2)-C(20)	109.69(16)

C(1)-O(1)-C(24)	115.23(19)
H(3B)-O(3)-H(3A)	122.2(16)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+1

	U11	U22	U33	Už	23	U13	U12
C(1)	29(1)	32(1)	28(1)	7(1)	6(1)	14(1)	
C(2)	25(1)	25(1)	19(1)	2(1)	4(1)	10(1)	
C(3)	28(1)	20(1)	26(1)	0(1)	1(1)	7(1)	
C(4)	20(1)	24(1)	25(1)	-2(1)	-1(1)	5(1)	
C(5)	23(1)	23(1)	19(1)	3(1)	3(1)	9(1)	
C(6)	24(1)	22(1)	32(1)	4(1)	4(1)	5(1)	
C(7)	20(1)	30(1)	33(1)	5(1)	3(1)	5(1)	
C(8)	19(1)	21(1)	24(1)	3(1)	2(1)	6(1)	
C(9)	24(1)	21(1)	23(1)	2(1)	4(1)	8(1)	
C(10)	31(1)	34(1)	25(1)	4(1)	7(1)	18(1)	
C(11)	34(1)	32(1)	23(1)	1(1)	7(1)	15(1)	
C(12)	24(1)	22(1)	22(1)	2(1)	3(1)	7(1)	
C(13)	23(1)	24(1)	22(1)	0(1)	2(1)	5(1)	
C(14)	30(1)	32(1)	19(1)	-1(1)	0(1)	13(1)	
C(15)	37(1)	49(2)	24(1)	6(1)	4(1)	12(1)	
C(16)	55(2)	67(2)	24(1)	8(1)	11(1)	24(2)	
C(17)	70(2)	60(2)	20(1)	-7(1)	0(1)	24(2)	
C(18)	56(2)	57(2)	36(2)	-13(1)	-4(1)	3(2)	
C(19)	40(1)	46(2)	31(1)	-7(1)	5(1)	4(1)	
C(20)	20(1)	21(1)	24(1)	2(1)	1(1)	6(1)	
C(21)	25(1)	32(1)	25(1)	0(1)	-4(1)	12(1)	
C(22)	26(1)	37(1)	22(1)	0(1)	-4(1)	12(1)	
C(23)	21(1)	24(1)	21(1)	1(1)	0(1)	4(1)	
C(24)	48(2)	33(1)	58(2)	16(1)	16(1)	25(1)	
N(1)	22(1)	21(1)	21(1)	2(1)	2(1)	7(1)	
N(2)	21(1)	20(1)	22(1)	0(1)	3(1)	6(1)	
O(1)	36(1)	26(1)	48(1)	8(1)	6(1)	17(1)	
O(2)	33(1)	44(1)	63(1)	7(1)	-12(1)	16(1)	
O(3)	850(20)	81(4)	210(7)	-6(5)	118(12)	137(8)	

Table S3. Anisotropic displacement parameters ($Å^2 \times 10^3$).

Х	у	Z	U(eq)
3557	4706	4144	31
6045	3529	4606	29
1347	1057	3671	32
-1137	2235	3195	33
5173	2621	6380	35
7903	2477	8031	35
8913	970	9248	44
9645	1818	11034	57
12749	2976	11762	62
15131	3310	10701	65
14388	2485	8905	49
3742	1020	2174	34
5387	-270	1102	36
-877	6821	3745	66
-2781	5930	3667	66
-1904	6065	2636	66
7430(30)	4690(20)	8588(12)	15(6)
8530(40)	4640(30)	9987(12)	65(11)
	x 3557 6045 1347 -1137 5173 7903 8913 9645 12749 15131 14388 3742 5387 -877 -2781 -1904 7430(30) 8530(40)	xy355747066045352913471057-113722355173262179032477891397096451818127492976151313310143882485374210205387-270-8776821-27815930-190460657430(30)4690(20)8530(40)4640(30)	xyz 3557 4706 4144 6045 3529 4606 1347 1057 3671 -1137 2235 3195 5173 2621 6380 7903 2477 8031 8913 970 9248 9645 1818 11034 12749 2976 11762 15131 3310 10701 14388 2485 8905 3742 1020 2174 5387 -270 1102 -877 6821 3745 -2781 5930 3667 -1904 6065 2636 $7430(30)$ $4690(20)$ $8588(12)$ $8530(40)$ $4640(30)$ $9987(12)$

Table S4. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (Å²×10³).

Compd	Soret band, nm	Q bands, nm					
	$(\epsilon \times 10^5, M^{-1} cm^{-1})$	$(\epsilon \times 10^4, \mathrm{M}^{-1} \mathrm{cm}^{-1})$					
Ι	416 (1.83)	514 (1.67)	549 (0.81)	590 (0.5)	645 (0.52)		
II	418 (1.38)	515 (0.71)	550 (0.33)	590 (0.22)	645 (0.2)		
III	418 (1.8)	515 (1.38)	550 (0.66)	591 (0.43)	646 (0.35)		
IV	418 (1.8)	515 (1.42)	550 (0.66)	591 (0.45)	646 (0.35)		
V	419 (1.53)	516 (0.89)	550 (0.41)	590 (0.27)	646 (0.22)		
VI	419 (1.23)	516 (0.68)	550 (0.31)	591 (0.21)	646 (0.16)		

Table S5. UV-Vis spectra data of six porphyrin derivatives I-VI.

	Laser	β	γ	χ ⁽³⁾	F _{oL}	
Compound	parameters	(m W ⁻¹)	$(m^2 W^{-1})$	(esu)	(J cm ⁻²)	ref
III	532 nm, 7 ns, 10 Hz	3.7×10-9	-17×10 ⁻¹⁷	17.9×10 ⁻¹¹	0.11	T W
<i>meso</i> -tetrakis(2,3,5,6- tetrafluoro-N,N- dimethyl-4- anilinyl)porphyrin	532 nm, 7 ns, 10 Hz	0.32×10-9	-	7.9×10 ⁻¹²	-	S1
Fluorinated trans-dicationic pyridinium porphyrin	532 nm, 7 ns, 10 Hz	75×10 ⁻⁸	-	-	1.27	S2
Cu-porphyrin	532 nm, 6 ns, 10 Hz	132 ×10 ⁻⁸	-	-	1.7	S3
Zincporphyrin	532 nm, 21 ps, 1 Hz	5.8× 10 ⁻⁹	55×10 ⁻¹⁷	4.76×10 ⁻¹⁰		S4
4,40-((porphyrin-5,15- diylbis(4,1- phenylene))bis(ethyne- 2,1- diyl))bis(N,Ndihexadecyl aniline)	532 nm, 21 ps	6.8×10 ⁻¹²	1.2×10 ⁻¹⁹	1.60×10 ⁻¹³	-	S5
Tetra tolyl porphyrins	532 nm, 35 ps, 10 Hz	-	-	10 ⁻¹²	-	S6
Tetraphenyl-porphyrin film	532 nm, 30 ps, 10 Hz,	10 ⁻⁶	10 ⁻¹³	10 ⁻¹⁶	-	S7
ZnPor-PMMA	532 nm, 21 ps, 1 Hz	4×10 ⁻⁹	12×10 ⁻¹⁷	1.64× 10 ⁻¹⁰		S4
ZnCu-Por-COF	532 nm, 6 ns, 10 Hz	4470×10 ⁻⁸	-	-	-	S8
Graphene-copper porphyrin	532 nm, 6 ns, 10 Hz	4720×10 ⁻⁸	-	8.5×10 ⁻¹²	0.1	S8
C60/porphyrin film	532 nm, 8 ns, 1 Hz	-6.99×10 ⁻⁶	-2.96×10 ⁻¹²	-	-	S9

Table S6. Comparison of NLO coefficients with previously reported porphyrin derivatives.

TW: This work

S1 N. S. Narendran, R. Soman, C. Arunkumar and K. Chandrasekharan, *Spectrochimica Acta Part A Molecular* & *Biomolecular Spectroscopy*, 2015, **136**, 838-844.

S2 M. V. Vijisha, J. Ramesh, C. Arunkumar and K. Chandrasekharan, Optical Materials, 2019, 98, 109474.

S3 M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan and D. N. Rao, *Applied Physics Letters*, 2011, **98**, 666.

S4 N. Qiu, D. Liu, S. Han, X. He, G. Cui and Q. Duan, *Journal of Photochemistry & Photobiology A Chemistry*, 2013, **272**, 65-72.

S5 Xiong, Liu, Dong, Wang, Hong, Gao, Zhou, Yang, Yan and Xing, Dyes & Pigments, 2016, 134, 155-163.

S6 S. V. Rao, N. Srinivas, D. N. Rao, L. Giribabu, B. G. Maiya, R. Philip and G. R. Kumar, *Optics Communications*, 2000, **182**, 255-264.

S7 L.M. Clavian, P.C. Rajesh Kumar, K.V. Anil Kumar, D. Narayana Rao, N.K. Shihab, Sanjeev Ganesh, *Optics & Laser Technology*, 2019, **119**,105642.

S8 B. P. Biswal, S. Valligatla, N. A. Saad, M. B. M. K. Mariserla, M. Wang, N. Chandrasekhar, D. Becker, M. Addicoat, I. Senkovska, R. Berger, D. N. Rao, S. Kaskel, X. Feng and T. Banerjee, *Angewandte Chemie (International ed. in English)*, 2019, 58, 6896-6900.

S9 L. J. A, Q. C. A, Q. O. A, H. L. B, Y. W. A, X. Z. A, Y. S. A and Y. L. B, *Chemical Physics*, 2006, **324**, 556-562.