Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Suppl

Antioxidant Product Analysis of Hulu Tea (Tadehagi triquetrum)

Wenhui Zhang, ^a Xican Li, ^{*a} Yujie Hua, ^a Zhen Li, ^b Ban Chen, ^a Aijun Liu, ^b Wenbiao Lu, ^a Xiaojun Zhao, ^a Yuanming Diao, ^b and Dongfeng Chen ^{*b}

- ¹ School of Chinese Herbal Medicine; Guangzhou University of Chinese Medicine, Guangzhou 510006, China. E-mails:
- ² School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China, 510006.

* Correspondence: <u>lixican@126.com</u> (X. L.); ORCID: 0000-0002-4358-3993. chen888@gzucm. edu.cn (D.C.) Tel: +86-20-39358076; Fax: +86-20-38892690

Note: This Supporting information provides the original data of Table 1-2 in the main text.

Suppl. 1 Dose response curves

1. DPPH•-scavenging assay

Figure S1.1: The dose response curves of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH in DPPH-scavenging assay. Each value is expressed as mean \pm SD (n = 3).

DPPH•-scavenging assay.				
	Mean±SD	Mean±SD		
	μg/mL	μΜ		
kaempferol	8.5±0.6	<u>29.8±2.3</u>		
isoquercitrin	15.5±0.3	<u>33.4±0.6</u>		
protocatechuic acid	49.0±3.0	<u>316.7±19.2</u>		
rutin	21.8±0.7	<u>35.7±1.2</u>		
<i>p</i> -coumaric acid	145.4±34.2	<u>885.9±208.4</u>		
afzelin	301.5±22.1	<u>697.4±51.2</u>		
daidzein	272.6±34.7	<u>1072.1±136.7</u>		
pHBA	6452.8±20.3	<u>46718.0±146.7</u>		
LAEH	91.2±2.3	=		
Ascorbic acid	8.5±0.6	<u>48.5±3.6</u>		
Trolox	7.8±1.1	<u>31.0±4.2</u>		

Tab. S1.1 The comparison of IC₅₀ values of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH and positive control in DPPH•-scavenging assay.

2. PTIO[•]-scavenging assay

Figure S1.2: The dose response curves of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH in PTIO-scavenging assay. Each value is expressed as mean \pm SD (n = 3).

	Mean±SD	Mean±SD	
	µg/mL	μΜ	
kaempferol	30.0±4.8	<u>104.9±16.7</u>	
isoquercitrin	164.7±8.3	<u>354.7±18.0</u>	
protocatechuic acid	102.1±3.7	<u>662.4±23.7</u>	
rutin	211.1±38.8	<u>345.7±63.6</u>	
<i>p</i> -coumaric acid	141.5±11.1	<u>862.3±67.5</u>	
afzelin	734.6±495.2	<u>1699.0±1145.2</u>	
daidzein	689.4±249.2	<u>2711.6±980.3</u>	
pHBA	3057.8±201.4	<u>22138.5±1458.4</u>	
LAEH	328.4±72.6	=	
Ascorbic acid	19.9±0.5	<u>113.1±2.7</u>	
Trolox	54.2±1.4	<u>216.6±5.5</u>	

Tab. S1.2 The comparison of IC₅₀ values of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH and positive control in PTIO•-scavenging assay.

3. Fe^{2+} -reducing assay

Figure S1.3: The dose response curves of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH in Fe²⁺-reducing assay. Each value is expressed as mean \pm SD (n = 3).

	Mean±SD	Mean±SD
	µg/mL	μΜ
kaempferol	15.9±1.6	<u>55.6±5.7</u>
isoquercitrin	36.8±3.0	<u>79.3±6.4</u>
protocatechuic acid	26.7±0.5	<u>173.1±3.4</u>
rutin	50.3±4.6	<u>82.4±7.6</u>
<i>p</i> -coumaric acid	1653.1±212.3	<u>10070.2±1293.1</u>
afzelin	963.0±156.9	<u>2227.2±362.9</u>
daidzein	2224.6±199.3	<u>8749.8±784.1</u>
pHBA	2177.0±184.9	<u>15761.4±1338.9</u>
LAEH	243.5±34.6	=
Ascorbic acid	11.3±0.4	<u>63.9±2.1</u>
Trolox	9.9±0.2	<u>39.7±1.0</u>

Tab. S1.3 The comparison of IC₅₀ values of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH and positive control in Fe^{2+} -reducing assay.

4. Cu²⁺-reducing assay

Figure S1.4: The dose response curves of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH in Cu²⁺-reducing assay. Each value is expressed as mean \pm SD (n = 3).

	Mean±SD	Mean±SD
	μg/mL	μΜ
kaempferol	36.0±1.2	<u>125.7±4.2</u>
isoquercitrin	25.1±0.3	<u>54.1±0.6</u>
protocatechuic acid	10.0±0.5	<u>64.9±3.5</u>
rutin	34.5±1.8	<u>56.5±2.9</u>
<i>p</i> -coumaric acid	100.6±12.6	<u>612.8±76.5</u>
afzelin	457.8±31.2	<u>1058.9±72.2</u>
daidzein	131.8±19.9	<u>518.6±78.2</u>
pHBA	1602.7±582.5	<u>11603.6±4217.6</u>
LAEH	189.4±15.7	2
Ascorbic acid	29.8±1.1	<u>169.4±6.2</u>
Trolox	35.7±2.1	<u>142.7±8.4</u>

Tab. S1.4 The comparison of IC₅₀ values of kaempferol, isoquercitrin, protocatechuic acid, rutin, *p*-coumaric acid, afzelin, daidzein, *p*-hydroxybenzoic acid (pHBA), and LAEH and positive control in Cu^{2+} -reducing assay.

Figure S2.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (A) Chromatogram of isoquercitrin-DPPH adduct when the formula $[C_{39}H_{32}N_5O_{18}-H]$ was extracted; (B) primary MS spectra of isoquercitrin-DPPH adduct; (C) secondary MS spectra of isoquercitrin-DPPH adduct.

Figure S2.2 One of the possible interpretations of mass spectra of isoquercitrin-DPPH adduct (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Figure S3.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (A) Chromatogram of rutin-DPPH adduct when the formula $[C_{45}H_{42}N_5O_{22}-H]$ was extracted; (B) primary MS spectra of rutin-DPPH adduct; (C) secondary MS spectra of rutin-DPPH adduct.

Figure S3.2 One of the possible interpretations of mass spectra of rutin-DPPH adduct (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Figure S4.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (A) Chromatogram of protocatechuic acid-DPPH adduct when the formula $[C_{25}H_{18}N_5O_{10}-H]$ was extracted; (B) primary MS spectra of protocatechuic acid-DPPH adduct; (C) secondary MS spectra of protocatechuic acid-DPPH adduct.

Figure S4.2 One of the possible interpretations of mass spectra of protocatechuic acid-DPPH adduct (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Suppl. 5 daidzein-DPPH• adducts

Figure S5.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (D) Chromatogram of daidzein-DPPH adduct when the formula $[C_{33}H_{22}N_5O_{10}-H]$ was extracted; (E) primary MS spectra of daidzein-DPPH adduct; (F) secondary MS spectra of daidzein-DPPH adduct.

Figure S5.2 One of the possible interpretations of mass spectra of daidzein-DPPH adduct (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Figure S6.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (A) Chromatogram of afzelin-DPPH adduct when the formula $[C_{39}H_{32}N_5O_{16}-H]$ was extracted; (B) primary MS spectra of afzelin-DPPH adduct; (C) secondary MS spectra of afzelin-DPPH adduct.

Figure S6.2 One of the possible interpretations of mass spectra of afzelin-DPPH adduct (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Suppl. 7 p-coumaric acid-DPPH• adducts

Figure S7.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (J) Chromatogram of *p*-coumaric acid-DPPH adduct when the formula $[C_{27}H_{20}N_5O_9-H]$ was extracted; (K) primary MS spectra of *p*-coumaric acid-DPPH adduct; (L) secondary MS spectra of *p*-coumaric acid-DPPH adduct.

Figure S7.2 One of the possible interpretations of mass spectra of *p*-coumaric acid-DPPH adduct (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Figure S8.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (G) Chromatogram of pHBA-DPPH adduct when the formula $[C_{25}H_{18}N_5O_9-H]$ was extracted; (H) primary MS spectra of pHBA-DPPH adduct; (L) secondary MS spectra of pHBA-DPPH adduct.

Figure S8.2 One of the possible interpretations of mass spectra of pHBA-DPPH adduct (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Figure S9.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (A) Chromatogram of kaempferol- kaempferol homodimers when the formula $[C_{30}H_{20}O_{12}-2H]$ was extracted; (B) primary MS spectra of kaempferol- kaempferol homodimers; (C) secondary MS spectra of kaempferol- kaempferol-kaempferol homodimers.

Figure S9.2 One of the possible interpretations of mass spectra of kaempferol- kaempferol homodimers (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Suppl. 10 isoquercitrin- isoquercitrin homodimers

Figure S10.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (A) Chromatogram of isoquercitrin- isoquercitrin homodimers when the formula $[C_{42}H_{40}O_{24}-2H]$ was extracted; (B) primary MS spectra of isoquercitrin- isoquercitrin homodimers; (C) secondary MS spectra of isoquercitrin homodimers.

Figure S10.2 One of the possible interpretations of mass spectra of isoquercitrin- isoquercitrin homodimers (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Suppl. 11 daidzein-daidzein homodimers

Figure S11.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (M) Chromatogram of daidzein- daidzein homodimers when the formula $[C_{30}H_{20}O_8-2H]$ was extracted; (N) primary MS spectra of daidzein- daidzein homodimers; (O) secondary MS spectra of daidzein- daidzein homodimers.

Figure S11.2 One of the possible interpretations of mass spectra of daidzein- daidzein homodimers (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Suppl. 12 p-coumaric acid- p-coumaric acid homodimers

Figure S12.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (P) Chromatogram of p-coumaric acid-p-coumaric acid homodimers when the formula [C₁₈H₁₆O₆-2H] was extracted; (Q) primary MS spectra of p-coumaric acid-p-coumaric acid homodimers; (R) secondary MS spectra of p-coumaric acid homodimers.

Figure S12.2 One of the possible interpretations of mass spectra of *p*-coumaric acid-*p*-coumaric acid homodimers (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Figure S13.1: Typical results of the UPLC-ESI-Q-TOF-MS analysis: (V) Chromatogram of *p*-coumaric acid plus pHBA heterodimers when the formula $[C_{16}H_{12}O_{6}-2H]$ was extracted; (W) primary MS spectra of *p*-coumaric acid plus pHBA heterodimers; (X) secondary MS spectra of *p*-coumaric acid plus pHBA heterodimers.

Figure S13.2 One of the possible interpretations of mass spectra of *p*-coumaric acid plus pHBA heterodimers (Other possible linking sites should not be excluded. The mass spectrogram was conducted under a negative ion model. The charge applied by the mass spectrogram is not shown. The relative atomic masses of C, H, O, and N were 12.0000, 1.007825, 15.994915, and 14.003074, respectively.)

Figure S2.1 (Raw figure)

Spectrum from isoquercitrin-dpph.wiff (sample 1) - isoquercitrin-dpph, Experiment 1, -TOF MS (100 - 2000) from 4.183 to 4.210 min
C39H31N5O18 -H

Spectrum from isoquercitrin-dpph.wiff (sample 1) - isoquercitrin-dpph, Experiment 4, -TOF MS^2 (100 - 2000) from 4.161 min Precursor: 856.2 Da CE=-45

Figure S3.1 (Raw figure)

Spectrum from rutin-dpph.wiff (sample 1) - rutin-dpph, Experiment 1, -TOF MS (100 - 2000) from 4.383 to 4.410 min
C45H41N5O22 -H

Spectrum from rutin-dpph.wiff (sample 1) - rutin-dpph, Experiment 5, -TOF MS^2 (100 - 2000) from 4.431 min Precursor: 1002.2 Da CE=-45

Figure S4.1 (Raw figure)

Spectrum from protocatechuicacid-dpph.wiff (sample 1) - protocatechu...id-dpph, Experiment 1, -TOF MS (100 - 2000) from 3.515 to 3.542 min
C25H17N5O10 -H

Spectrum from protocatechuicacid-dpph.wiff (sample 1) - protocatechuicacid-dpph, Experiment 3, -TOF MS^2 (100 - 2000) from 3.631 min Precursor: 546.1 Da CE=-45

Figure S5.1 (Raw figure)

Spectrum from DaidzeinD 12-2, will (sample 1) - DaidzeinD 12-2, Experiment 1, -TOF MS (50 - 1500) from 7.510 to 7.536 min @ C33H21N5O10 -H

Spectrum from DaidzeinD12-2 will (sample 1) - DaidzeinD12-2, Experiment 2, -TOF MS*2 (50 - 1500) from 7.551 min Precussor: 646.0 Da CE~45

TOF MS (50- 1500) 1 Spectrum from A © C39H31N5O16 -H D21-1 1)-Alz 021-1, Eq n68351

Figure S7.1 (Raw figure)

Spectrum from ZWH-5-1.wiff (sample 1) - 2019101...1, -TOF MS (50 - 1500) from 6.334 to 6.360 min © C27H19N5O9 -H

Spectrum from ZWH-5-1.wiff (sample 1) - 20191018\...xperiment 2, -TOF MS^2 (50 - 1500) from 6.272 min Precursor: 556.1 Da CE=-45

Figure S8.1 (Raw figure)

Spectrum from ZWH-3-1.wiff (sample 1) - 2019101...1, -TOF MS (50 - 1500) from 5.632 to 5.658 min © C25H17N5O9 -H

Spectrum from ZWH-3-1.wiff (sample 1) - 20191018\...xperiment 4, -TOF MS^2 (50 - 1500) from 5.740 min Precursor: 530.1 Da CE=-45

Figure S9.1 (Raw figure)

Spectrum from kaempferol-dpph(2).wiff (sample 1) - kaempferol-dpph(2), Experiment 4, -TOF MS^2 (100 - 2000) from 2.393 min Precursor: 569.1 Da CE=-45

Figure S10.1 (Raw figure)

Spectrum from isoquercitrin-dpph.wiff (sample 1) - isoquercitrin-dpph, Experiment 1, -TOF MS (100 - 2000) from 1.522 to 1.548 min C42H38O24 -H

Spectrum from isoquercitrin-dpph.wiff (sample 1) - isoquercitrin-dpph, Experiment 4, -TOF MS^2 (100 - 2000) from 1.435 min Precursor: 925.2 Da CE=-45

DT12-1 TOF MS 60. 2 260 to 2 286

Figure S12.1 (Raw figure)

Spectrum from ZWH-6-2.wiff (sample 1) - 2019101...1, -TOF MS (50 - 1500) from 1.629 to 1.654 min C18H14O6 -H

Spectrum from ZWH-5-1.wiff (sample 1) - 20191018\...xperiment 5, -TOF MS^2 (50 - 1500) from 1.531 min Precursor: 325.1 Da CE=-45

Figure S13.1 (Raw figure)

Spectrum from ZWH-6-2.wiff (sample 1) - 2019101...1, -TOF MS (50 - 1500) from 2.736 to 2.763 min C16H12O6 -H

Spectrum from ZWH-6-2.wiff (sample 1) - 20191018\...xperiment 2, -TOF MS^2 (50 - 1500) from 2.619 min Precursor: 299.0 Da CE=-45

