Electronic Supplementary Information (ESI) for:

Solvothermal-assisted preparation of PdRhTe nanowires as efficient electrocatalyst for ethylene glycol oxidation

Peiyan Bi, *a Xiaoping Wu, b Shuwen Xiong, a and Wei Hong*c

^a Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China.

^b School of Chemical Engineering and Light Industry, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China.

 ^c School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.

Corresponding authors: <u>bipychem@ecit.cn</u>, <u>weihongchem@hotmail.com</u>

Fig. S1 Typical TEM image of the Te NWs.

Fig. S2 Typical HAADF-STEM and elemental mapping images of the as-prepared $Pd_{45}Rh_{28}Te_{27}$ NWs.

Fig. S3 XPS survey spectra of the $Pd_{45}Rh_{28}Te_{27}$ NWs. The sample was dipped onto a commercial glass to form a thin film for the XPS measurements.

Formula S1

Activity = j / W,

In the formula, j represents peak current value (mA) of the forward scan in the CV curves, W represents the loading weight of Pd (mg) on the electrode.

Fig. S4 CV curves in 0.5 mol L^{-1} H₂SO₄ over different electrocatalysts, the scan rate is 50 mV s⁻¹. The electrochemical surface area (ECSA) of different PdRhTe NWs was calculated according to the reported literatures. The calculations were based on the

assumption that the charge density is 430 μ C cm⁻² for a fully covered Pd(OH)₂ monolayer, the ECSA (m² g⁻¹) values of the PdRhTe NWs can be calculated by the folloing formula,

 $ECSA = 100* Q_{Pd(OH)^2} / (430 * M),$

In the formula, M represents the loading weight of Pd (g) on the electrode, $Q_{Pd(OH)^2}(C)$ is the total charge amount (C).

References

- L., Xiao; L., Zhuang; Y., Liu; J., Lu; H. c. D., Abruña, J. Am. Chem. Soc. 2008, 131, 602-608.
- 2 W. Hong, C. Shang, J. Wang and E. Wang, *Energy Environ. Sci.*, 2015, 8, 2910-2915.
- 3 W. Hong, J. Wang and E. Wang, *ACS Appl. Mater. Interfaces*, 2014, **6**, 9481-9487.