Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Novel molecularly imprinted malachite green bifunctional imprinted microspheres through pickering

emulsion polymerization

Shi Wang^a, Chunsheng Lei^{a,*}, Shihao Liu^a, Zhewei Zhang^a, Ruyi Li^a, Siyang Feng^b School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P.R. China. E-mail: qiuyu_lei@126.com

Fig. S1 Optical picture of a series of Pickering emulsions prepared with various oil/water ratios (1/6 (a), 2/6 (b), and 3/6 (C), v/v, the volume of deionized water was 6 mL) at KABT concentration of 5 mg mL⁻¹ (6 mL deionized water); Picture(d) of MG Pickering emulsion stabilized byKABT at different concentration(30,50, 60, 80 mg, from left to right).

Fig. S2 Adsorption properties of MIP-MGs/NIP-MGs

Adsorption capacity MG MAA **EDGMA** AIBN MIP-MGs $(mg g^{-1})$ (mg) (mmol) (mmol) (mg)MIP-MG 1 10 0.06 0.20 20 18.33 MIP-MG 2 10 0.10 0.20 20 22.86 MIP-MG 3 0.08 0.20 38.12 10 20 MIP-MG 4 23.12 10 0.08 0.16 20 17.29 MIP-MG 5 10 0.08 0.24 20

Table S1 Optimization of the ratio of functional monomers to crosslinker

Table S2 Pore structural parameters of the prepared catalysts

Comula	Surface area	Pore	Average	
Sample	(m^2/g)	volume (cm^{3}/g)	aperture (nm)	
Bi-Ti	137.2223	0.001026	10.64444	
KABT	165.6655	0.018812	9.25256	

Table S3 Fitting parameters of adsorption kinetics for MG

0 (0 (max	Pseudo-first-order			Pseudo-second-order		
	Q_m (mg·g	$Q_e(mg \cdot g^-)$		D 2	$Q_e(mg \cdot g \cdot$	$k_2(g \cdot mg^{-1} \cdot min^{-1})$	D ²
	•)	1)	$K_1(\min^{-1})$	K2	1)	1)	K ²
MIP-MGs	38.1995	37.4529	0.02267	0.9614	43.8167	0.04054	0.9863
NIP-MGs	21.2813	21.06651	0.03058	0.9647	22.9848	0.04359	0.9751

Table S4 Fitting parameters of isothermal adsorption for MG

	Langmuir model			Freundlich model		
	$Q_m(mg \cdot g^{-1})$	$K_L(L \cdot mg^{-1})$	R ²	$K_F(mg \cdot g^{-1})$	1/n	R ²
MIP-MGs	36.5813	0.0225	0.9804	18.2823	0.2336	0.9574
NIP-MGs	27.5027	0.0252	0.9097	9.7031	0.2766	0.7780

Table S4 Selectivity of MIPM and NIPM for MG

Comparison		M	P-MGs	5		NI	P-MGs		
of	Ce	q_e	K _d	V,	Ce	q_e	K _d	V,	K_0
components	(mg/L)	(mg/L)	(L/g)	K'	(mg/L)	(mg/L)	(L/g)	Γ	
MG	4.82	21.18	4.39		10.28	14.78	1.44		
RB	12.24	12.76	1.04	4.26	11.83	13.17	1.11	1.30	3.28
CV	11.18	13.82	1.17	3.75	11.21	13.79	1.23	1.17	3.21

	Parameters	MIP-MGs	NIP-MGs	ABT
MG degradation	k (min ⁻¹)	0.0225	0.0083	0.01213
	\mathbb{R}^2	0.9472	0.9923	0.9097
	Parameters	MIP-MGs	NIP-MGs	BTC
CV degradation	k (min ⁻¹)	0.00834	0.00775	0.01277
	\mathbb{R}^2	0.9159	0.9374	0.8965
solution pH	Parameters	6	7	8
	k (min ⁻¹)	0.00724	0.01115	0.01251
	\mathbb{R}^2	0.91871	0.94254	0.92544
MIP-MGs dosage	Parameters	0.4g/L	0.8g/L	1.2g/L
	k (min ⁻¹)	0.00423	0.01113	0.01032
	\mathbb{R}^2	0.93981	0.90675	0.92032
inorganic anions	Parameters	Cl-	SO4 ²⁻	Not added
	k (min ⁻¹)	0.00744	0.00871	0.01176
	R ²	0.97444	0.9237	0.9373

Table S5 The degradation kinetic constants and regression coefficients of MG and CV degradation under different experimental conditions

Eq (S1)

The adsorption capacity Q (mg g^{-1}) was calculated using equation (1):

$$Q = \frac{(C_0 - C_t)V}{m}$$
(1)

where Q (mg g⁻¹), C_0 (mg L⁻¹), C_t (mg L⁻¹) ,m (g), V (mL) are the equilibrium adsorption amount are the equilibrium adsorption amount, initial MG concentration (mg/L), the concentration of MG after the adsorption for time (t) , the mass of the adsorbent (g), and the volume of the solution (L), respectively.

Eq (S2)

To evaluate the mass transfer and the rate-controlling process, the pseudo-first-order (PFO) and pseudo-second-order (PSO) expressed by Equation (2) and Equation (3) respectively, were used to analyze the kinetics data of MIP-MGs:

$$q_{t} = q_{e} \times (1 - e^{-k_{t}t})$$
(2)
$$q_{t} = k_{2}q_{e}^{2}t / (1 + k_{2}q_{e}t)$$
(3)

where $q_e \text{ (mg g}^{-1)}$ is the equilibrium adsorption capacity, $q_t \text{ (mg g}^{-1)}$ is the binding quantity at different time t (min), and $k_1 \text{ (min}^{-1)}$ and $k_2 \text{ (g mL}^{-1}\text{min}^{-1)}$ are the rate constants of pseudo-first-order and pseudo-secondorder models, respectively.

Eq (S3)

The Langmuir and Freundlich isotherm adsorption models are given by Equation (4) and Equation (5):

$$q_{e} = q_{mL}k_{L}C_{e} / (1 + k_{L}C_{e})$$
(4)
$$q_{e} = k_{F}C_{e}^{1/nF}$$
(5)

where $q_e \text{ (mgg}^{-1)}$ and $Ce \text{ (mgL}^{-1)}$ are equilibrium adsorption amount and equilibrium mass concentration respectively; $q_{mL} \text{ (mgg}^{-1)}$ is the saturated monolayer maximum adsorption amount of the Langmuir model; $K_L \text{ (Lmg}^{-1)}$ is the adsorption constants of the Langmuir; $K_F \text{ (Lmg}^{-1)}$ and nF are the constant of adsorption capacity and adsorption density of Freundlich respectively.

Eq (S4)

Selectivity evaluation:

$$K_{d} = q_{e} / C_{e}$$
(6)
$$k' = K_{d(MG)} / K_{d(x)}$$
(7)
$$K_{0} = k'_{M} / k'_{N}$$
(8)

where K_d , q_e , and Ce represent distribution coefficient, equilibrium absorption capacity, and equilibrium mass concentration, respectively; K' and $K_{d(MG)}$ are selectivity and distribution coefficients for MG respectively; K_0 , k'_M , and k'_N represent relative selectivity coefficient, selectivity coefficient for MIP-MGs, and selectivity coefficient for NIP-MGs, respectively.

Eq (S5)

The kinetics of the photocatalytic degradation of MG were fitted based on a pseudofirst-order kinetic model:

$$\ln C_0 / C_t = kt \tag{9}$$

where $C_0 (\text{mg/L})$ is the initial concentration of MG (mg/L), C_t is the concentration at time *t* (min), and *K* (min⁻¹) is the pseudo-first-order rate constant