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Fig. S1. Two coordinated manners (Trans (A’) and cis (A), Ar = 2-MeOC6H4) of the MAAA 
corresponding to P-atom of phosphine–sulfonate based Pd complexes.
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Fig. S2. Two coordination sites for polar monomers with phosphine–sulfonate based Pd 
complexes.
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Fig. S3. Detailed distortion/interaction analysis of the transition state: (a) 3TSM_12M and (b) 

3TSAM_21M. Energy in kcal mol−1 and distances in Å. Hydrogen atoms of the catalyst’s ligand 

have been omitted for clarity.

Table. S1. Computed energies for ethylene (E) and polar monomer (MAAA) copolymerization 

catalyzed by L2 with substituent effect (R = H and OMe) complex. E-MAAAC1 and E-MAAATS1 are 

polar monomer MAAA coordination complexes and transition states, respectively. E-MAAA-EC2 

and E-MAAA-ETS1 are coordination complexes and transition states of ethylene and MAAA 

copolymers, respectively.

Catalyst L2 Insertion E-MAAA 

C1

E-MAAA 

TS1 

E-MAAA

∆G1
‡ 

E-MAAA-E 

C2

E-MAAA-E 

TS2

E-MAAA-E 

∆G2
‡

1,2 -21.5 2.0 23.5 -31.2 -8.0 23.2L2,

R= H 2,1 -22.9 -2.7 20.1 -35.7 -14.1 21.6

1,2 -27.9 -4.2 23.8 -41.4 -18.5 23.0L2,

R= OMe 2,1 -22.2 -3.1 19.1 -42.1 -25.0 17.0
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Fig. S4. Chain propagation via ethylene insertion in 1,2-MAAA enchained and ethylene 

enchained species by applying catalyst A. 
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Fig. S5. Energy profiles for -H elimination and chain re-growth by using catalyst A.
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Fig. S6. Geometrical analysis of transition states to compare the substituent effect (R= H and 

OMe) of catalyst C.


