Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Computational study of copolymerization mechanism of ethylene with

methyl 2-acetamidoacrylate catalyzed by phosphine-sulfonate palladium

complexes

Andleeb Mehmood,^a Xiaowei Xu,^a Waseem Raza^a, Deepak Kukkar^b, Ki-Hyun Kim^{b,*}, and Yi Luo^{*a,c}

^aState Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

^bDepartment of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul Korea E-mail: kkim61@hanyang.ac.kr

^c*PetroChina Petrochemical Research Institute, Beijing 102206, China E-mail: luoyi@dlut.edu.cn*

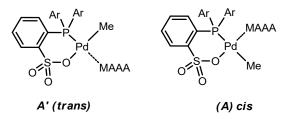
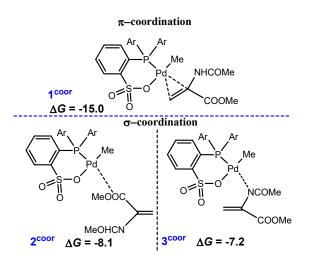



Fig. S1. Two coordinated manners (*Trans* (A') and *cis* (A), Ar = 2-MeOC₆H₄) of the MAAA corresponding to P-atom of phosphine–sulfonate based Pd complexes.

Fig. S2. Two coordination sites for polar monomers with phosphine–sulfonate based Pd complexes.

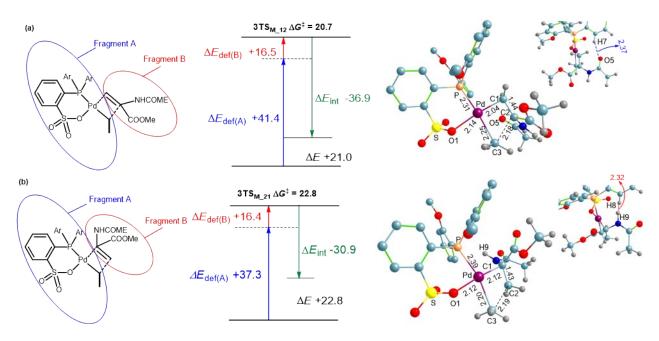


Fig. S3. Detailed distortion/interaction analysis of the transition state: (a) $3TS_{M_{12M}}$ and (b) $3TS_{AM_{21M}}$. Energy in kcal mol⁻¹ and distances in Å. Hydrogen atoms of the catalyst's ligand have been omitted for clarity.

Table. S1. Computed energies for ethylene (E) and polar monomer (MAAA) copolymerization catalyzed by L2 with substituent effect (R = H and OMe) complex. ^{E-MAAA}C1 and ^{E-MAAA}TS1 are polar monomer MAAA coordination complexes and transition states, respectively. ^{E-MAAA-E}C2 and ^{E-MAAA-E}TS1 are coordination complexes and transition states of ethylene and MAAA copolymers, respectively.

Catalyst L ₂	Insertion	E-MAAA	E-MAAA	E-MAAA	E-MAAA-E	E-MAAA-E	E-MAAA-E
		C ₁	TS ₁	ΔG_1^{\ddagger}	C ₂	TS ₂	$\Delta G_2{}^{\ddagger}$
L _{2,}	1,2	-21.5	2.0	23.5	-31.2	-8.0	23.2
R= H	2,1	-22.9	-2.7	20.1	-35.7	-14.1	21.6
L ₂ ,	1,2	-27.9	-4.2	23.8	-41.4	-18.5	23.0
R= OMe	2,1	-22.2	-3.1	19.1	-42.1	-25.0	17.0

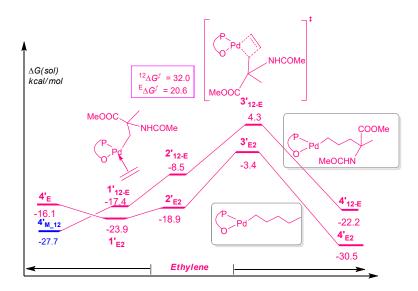


Fig. S4. Chain propagation via ethylene insertion in 1,2-MAAA enchained and ethylene enchained species by applying catalyst A.

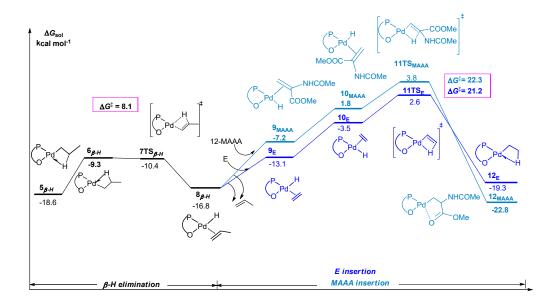
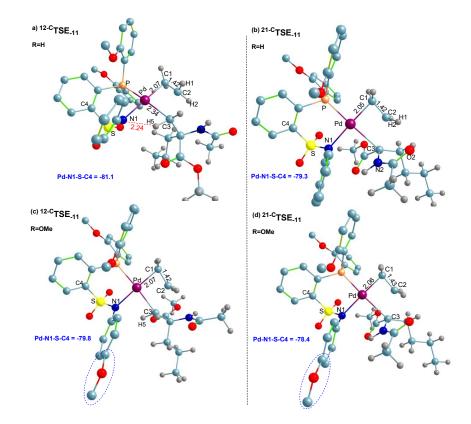



Fig. S5. Energy profiles for β -H elimination and chain *re*-growth by using catalyst A.

Fig. S6. Geometrical analysis of transition states to compare the substituent effect (R= H and OMe) of catalyst **C**.