Supporting Information

A highly efficient yet stable salamo-type fluorescent chemosensor for multiple responses to Cu²⁺ and S²⁻

Guang-Xu Yao, Peng Li, Jin-Qiang Zhang, Li Wang, Hui Liu and Wen-Kui Dong *

School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

* Corresponding author. E-mail: dongwk@126.com. Fax: (+86) 931-4938703 (Prof. Dr. Wen-Kui Dong).

CDCl₃ (Down).

Fig. S2. Infrared spectra of chemosensor H_3L , the Cu(II) complex, and H_3L+S^2 .

Determination of LOD, LOQ and Ka of detecting Cu²⁺.

(1) The quantitative limit and detection limits of Cu^{2+} and H_3L were determined from the fluorescence titer of the sensor H_3L and Cu^{2+} . Use the following equations to determine the LOD and LOQ.

Fit equation: y=-121.951x+2311.418 R²=0.96596

S=1.21951×10⁸
$$\delta = \sqrt{\frac{\sum (F_0 - \overline{F_0})^2}{N-1}}$$
 K=3
LOD = K × δ / S=1.5398 × 10⁻⁷ M; (N = 15) ;
LOQ = 10 × δ / S=4.5279 × 10⁻⁷ M.

Where N, S, F0 and \overline{F} are the number of replicates for the measurements, slope, fluorescence intensity and mean of fluorescence intensity of the blank solution of probe, respectively.

Benesi-Hildebrand equation as shown below:

 $\log (F-Fmin)/(Fmax-F) = \log Ka + 2 \log [Cu^{2+}]$ $Ka = 6.89 \times 10^9 M^{-1}$

Fig. S3. Linear calibration curve of Cu²⁺.

Fig. S4. Absorption spectra of H_3L solution in the presence of various cations (Cu²⁺, Hg²⁺, Cr³⁺, Fe³⁺, Cd²⁺, Mn²⁺, Ca²⁺, Ag⁺, Na⁺, Li⁺, Zn²⁺, K⁺, Mg²⁺, Al³⁺, Fe²⁺, Co²⁺, Pb²⁺ and Ga³⁺).

Determination of LOD, LOQ and Ka of detecting S²⁻.

(1) The quantitative limit and detection limits of S^{2-} and H_3L were determined from the fluorescence titer of the sensor H_3L and S^{2-} . Use the following equations to determine the LOD and LOQ.

Fit equation: y=138.802x+1269.301 R²=0.97487

S=1.38802×10⁸
$$\delta = \sqrt{\frac{\sum (F_0 - \overline{F_0})^2}{N-1}}$$
 K=3
LOD = K × δ / S=1.7274 × 10⁻⁷ M; (N = 15) ;
LOQ = 10 × δ / S=6.4692 × 10⁻⁷ M.

Where N, S, F0 and \overline{F} are the number of replicates for the measurements, slope, fluorescence intensity and mean of fluorescence intensity of the blank solution of probe, respectively.

Benesi-Hildebrand equation as shown below: $\log (F-Fmin)/(Fmax-F) = \log Ka + 2 \log [S^{2-}] \quad Ka = 1.59 \times 10^9 M^{-1}$

Fig. S5. Linear calibration curve of S²⁻.

Fig. S6. Mass spectrum of chemosensor H₃L.

Fig. S7. Chemosensor H_3L recognizes S²⁻, the color of the solution deepens obviously under natural light.

Compound and	
Compound code	$[Cu_2(L)]CIO_4 \cdot 2CH_3OH$
CCDC number	2077985
Empirical formula	$C_{31}H_{37}ClCu_2N_4O_{15}$
Molecular weight	868.17
Temperature(K)	173
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P21/c
$a(\text{\AA})$	11.3598(4)
b(Å)	28.8890(8)
$c(\text{\AA})$	10.9160(3)
α°	90
β°	100.7080(10)
γ°	90
Volume(Å ³)	3519.96(19)
Z	4
Dx (gcm ⁻³)	1.638
$\mu(mm-1)$	1.362
F(000)	1784
Crystal size(mm ³)	0.19 imes 0.17 imes 0.16
θ range (°)	2.306-26.748
Index ranges	$-13 \le h \le 14, -36 \le k \le 36, -13 \le l \le 13$
$R_{\rm int}$	0.0717
Data completeness	99.70%
Reflns/restraints/parameters	7471/235/532
Final R indexes $[I \ge \sigma(I)]^a$	$R_1 = 0.0694, wR_2 = 0.1610$
Final R indexes (all data) ^b	$R_1 = 0.0960, wR_2 = 0.1774$
Goodness-of-fit on F^2	1.069
$\Delta r_{\max,\min} (e \text{\AA}^{-3})$	0.88 and -1.11

 Table S1: Structure refinement and crystal data for the Cu(II) complex.

.

Bond	Bond length (Å)	Bond	Bond length (Å)
Cu1-O2	1.905(4)	Cu2-O8	1.897(4)
Cu1-O5	1.960(4)	Cu2-O5	1.948(3)
Cu1-N1	1.962(4)	Cu2-N3	1.964(4)
Cu1-N2	1.964(4)	Cu2-N4	1.962(4)
Bond	Bond length (Å)	Bond	Bond length (Å)
O2-Cu1-O5	84.38(15)	O8-Cu2-O5	82.64(15)
O2-Cu1-N1	89.78(17)	O8-Cu2-N3	166.55(16)
O2-Cu1-N2	164.72(17)	O8-Cu2-N4	90.91(17)
O5-Cu1-N1	172.75(17)	O5-Cu2-N3	85.40(16)
O5-Cu1-N2	85.75(16)	O5-Cu2-N4	173.55(17)
N1-Cu1-N2	100.83(18)	N4-Cu2-N3	101.00(17)
C1-O2-Cu1	124.2(3)	C24-O8-Cu2	127.7(3)
Cu2-O5-Cu1	103.06(16)	C13-O5-Cu2	129.2(3)
C13-O5-Cu1	127.7(3)	O6-N3-Cu2	119.0(3)
O3-N1-Cu1	124.8(3)	C19-N3-Cu2	129.3(3)
C8-N1-Cu1	123.5(4)	O7-N4-Cu2	123.7(3)
O4-N2-Cu1	119.2(3)	C22-N4-Cu2	125.8(4)
C11-N2-Cu1	128.9(4)		

Table S2: Selected bond lengths (Å) and angles (°) of [Cu₂(L)]ClO₄·2CH₃OH.

D–X…A	d(D–X)	$d(X \cdots A)$	$d(D \cdots A)$	∠D–X…A
O10H10⋯O13	0.84	2.43	2.921(18)	118
011H11A…015	0.84	2.5	3.30(2)	160
С8Н8…О10	0.95	2.5	3.436(10)	169
С9Н9А…О8	0.99	2.44	3.392(7)	162
С9Н9В…О4	0.99	2.29	3.213(6)	155
C10H10A…O6	0.99	2.54	3.342(7)	138
С15Н15…О12	0.95	2.6	3.528(15)	165
С20Н20А…О4	0.99	2.59	3.323(7)	130
C21H21A…O2	0.99	2.44	3.417(7)	169
С21Н21В…О6	0.99	2.35	3.259(6)	152
С22Н22…О11	0.95	2.49	3.403(15)	162
C29H29A…O15	0.98	2.57	3.538(17)	172

Table S3: Putative hydrogen bond interactions (Å) for the Cu(II) complex.