Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Distinctive MoS₂-MoP nanosheets structure anchored on Ndoped porous carbon support as a catalyst to enhance electrochemical hydrogen production

Yaoxia Yang^{*a}, Xuqin An^a, Mi Kang^a, Fengyao Guo^a, Lan Zhang^a, Qingtao Wang^a, Dongfei Sun^a, Yuan Liao^a, Zhiwang Yang^a, Ziqiang Lei^a

^a Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education,

Key Laboratory of Eco-environmental Polymer Materials of Gansu Province,

College of Chemistry and Chemical Engineering, Northwest Normal University,

Lanzhou 730070, China.

^{*}Corresponding author. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.

E-mail address: yaoxiayang@nwnu.edu.cn; yangyaoxia2007@126.com (Y-X, Yang).

Fig. S1 SEM images of MoP/NC (a) and MoS_2/NC (b).

Fig. S2 TEM images (a) and HR-TEM images (b) of MoP/NC.

Fig. S3 TEM images (a) and HR-TEM images (b) of MoS_2/NC .

电子时间 17				
	A CONTRACTOR OF THE STATE		A State of the second second second	
	and the second states of the second			
· · · · · · · · · · · · · · · · · · ·	A STREET BELLEVILLE			
公布商本属了				
		S. C. S. S. S. S. S. S. S.		
- 二十分月 新生活的人				
75 8234	NO		C. C	No. 1 Acres No. 1
				the state of the state of the

Fig. S4 EDX elemental mapping of Mo, P, C and N for MoP/NC.

Fig. S5 EDX elemental mapping of Mo, S, C and N for MoS_2/NC .

Fig. S6 XRD patterns of MoP/NC (a) and MoS_2/NC (b).

Fig. S7 CV curves of MoP/NC and MoS₂/NC in the non-faradaic capacitance current range at different scan rates in 1 M KOH.

Fig. S8 CV curves of MoP/NC /NC MoS₂ and in the non-faradaic capacitance current range at different scan rates in 0.5 M H₂SO₄.

Catalyst	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Reference	
MoS ₂ -MoP/NC	83	59.38	This work	
MoP/Mo ₂ C@C	75	58	[1]	
MnP-MoPNPs/N,P-Gr	74.2	57.7	[2]	
MoP/NPG	126	56	[3]	
MoP@NC	149	61.7	[4]	
Ar-MoP/CC	100	55	[5]	
Mn-MoP	198	50	[6]	
Fe-MoS ₂ /CoMo ₂ S ₄	122	90	[7]	
CoP/CN@MoS2	149	88	[8]	
Co-Ex-MoS ₂	89	53	[9]	
MoS ₂ -Ni ₃ B ₄ @NF	102	93	[10]	

Table S1 Summary of various MoP and MoS_2 based catalysts for HER in 1 M KOH

Catalyst	η ₁₀ (mV)	Tafel slope	$C_{dl} (mF cm^{-2})$	Rct (Ω)
		(mV dec ⁻¹)		
MoS ₂ -MoP/NC	83	59.38	17.12	17.62
MoP/NC	279	87.43	3.01	92.34
MoS ₂ /NC	216	71.73	2.62	75.68

 Table S2 HER parameters of various as-prepared catalysts in 1 M KOH.

		Tafel slope	DC
Cataryst	η ₁₀ (mv)	$(mV dec^{-1})$	Kelerence
MoS ₂ -MoP/NC	103	59.20	This work
MoP/Mo ₂ C@C	89	45	[1]
MoP/NPG	148	49	[3]
MoP/NG	94	50.1	[11]
MoP@C@rGO	130	79	[12]
MoP@NC-MF	125	53	[13]
MoP/NCNT-NGR	100	44	[14]
Mo ₃ P/MoP	156	59	[15]
MoS ₂ P/CNT	117	52.2	[16]
N-MoS ₂ /CN	114	46.8	[17]
Ag ₂ S/MoS ₂ /RGO	190	56	[18]

Table S3 Summary of various MoP and MoS₂ based catalysts for HER in 0.5 M $\rm H_2SO_4$

Catalyst	$\eta_{10} \left(mV \right)$	Tafel slope	C_{dl} (mF cm ⁻²)	Rct (Ω)
		$(mV dec^{-1})$		
MoS ₂ -MoP/NC	103	59.20	15.67	18.77
MoP/NC	228	98.31	3.65	85.82
MoS ₂ /NC	290	145.31	0.103	100.03

Table S4 HER parameters of various as-prepared catalysts in 0.5 M H₂SO₄.

Reference

- L. N. Zhang, S. H. Li, H. Q. Tan, S. F. U. Khan, Y. Y. Ma, H. Y. Zang, Y. H.
 Wang and Y. G. Li, ACS Appl. Mater. Inter., 2017, 9, 16270-16279.
- [2] C. D. Nguyen, V. H. Nguyen, T. Y. Vu, L. M. T. Pham and K. L. Vu-Huynh, *Colloid. Surface. A*, 2020, **593**, 124609.
- [3] R. Y. Ge, J. J. Huo, T. Liao, Y. Liu, M. Y. Zhu, Y. Li, J. J. Zhang and W. X. Li, *Appl. Catal. B: Environ.*, 2020, 260, 11819.
- [4] C. R. Pi, C. Huang, Y. X. Yang, H. Song, X. M. Zhang, Y. Zheng, B. Gao, J. J.
 Fu, P. K. Chu and K. F. Huo, *Appl. Catal. B: Environ.*, 2020, 263, 118358.
- [5] N. N. Chen, W. B. Zhang, J. C. Zeng, L. Q. He, D. Li and Q. S. Gao, *Appl. Catal. B: Environ.*, 2020, 268, 118441.

- [6] Z. Y. Mu, T. Guo, H. Fei, Y. Q. Mao, Z. Z. Wu and D. Z. Wang, *Appl. Surf. Sci.*, 2021, 551, 149321.
- [7] Y. N. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. S. Bando, Y. M. Kang,
 S. A. Hossain, Y. Sugahara and Y. Yamauchi, *ACS Nano*, 2020, 14, 4141-4152.
- [8] J. G. Li, K. F. Xie, H. C. Sun, Z. S. Li, X. Ao, Z. H. Chen, K. K. Ostrikov, C. D. Wang and W. J. Zhang, ACS Appl. Mater. Inter., 2019, 11, 36649-36657.
- [9] Y. T Luo, X. Li, X. K. Cai, X. L. Zou, F. Y. Kang, H. M. Cheng and B. L. Liu, ACS Nano, 2018, 12, 4565-4573.
- [10] B. Gao, X. Y. Du, Y. H. Li and Z. X. Song, Appl. Surf. Sci., 2020, 510, 145368.
- [11] C. Huang, C. R. Pi, X. M. Zhang, K. Ding, P. Qin, J. J. Fu, X. Peng, B. Gao, P. K. Chu and K. F. Huo, *Small*, 2018, **14**,1800667.
- [12] Y. F. Zhang, J. Yang, Q. C. Dong, H. B. Geng, Y. Zheng, Y. L. Liu, W. J. Wang,
 C. C. Li and X. C. Dong, ACS Appl. Mater. Inter., 2018, 10, 26258-26263.
- [13] Z. Y. Guo, P. Liu, J. Liu, F. L. Du and L. H. Jiang, ACS Appl. Energy Mater., 2018, 1, 5437-5445.
- [14] M. H. Lee, D. H. Youn and J. S. Lee, Appl. Catal. A: Gen., 2020, 594, 117451.
- [15] A. K. Sun, K. G. Lv, D. G Wang and Z. Z. Wu, *Appl. Surf. Sci.*, 2019, 493,740-746.
- [16] X. L. Li, X. H. Wang, Y. Nie, B. X. Tao, Y. X. Yang, W. H. Guo, J. L. Zhang, Z. Cai, Y. Ling, W. Liu, H.Q. Luo and N. B. Li, *J. Catal.*, 2020, **382**, 228-236.

- [17] H. Wang, X. Xiao, S. Y. Liu, C. L. Chiang, X. X. Kuai, C. K. Peng, Y. C. Lin, X. Meng, J. Q. Zhao, J. H. Choi, Y. G. Lin, J. M. Lee and L. J. Gao, *J. Am. Chem. Soc.*, 2019, **141**, 18578-18584.
- [18] G. C. Solomon, R. Mazzaro, S. J. You, M. M. Natile, V. Morandi and I. Concina, ACS Appl. Mater. Inter., 2019, 11, 22380-22389.