Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## Supporting Information

## {BW<sub>12</sub>O<sub>40</sub>} Hybrid decorated by Ag<sup>+</sup> for using as the material of Supercapacitor and Photocatalyst

Qiu-Lan Liang<sup>a</sup>, Na-Na Du<sup>a</sup>, Li-Ge Gong<sup>a,b\*</sup>, Chun-Xiao Wang<sup>a</sup>, Chun-Mei Wang<sup>a</sup>, Kai Yu<sup>a,b\*</sup>, Bai-Bin Zhou<sup>a,b\*</sup>

**Materials and General Characterization.** All reagents are purchased without further purification. The infrared spectroscopy (IR) of the compound is carried out on a VER TEX 80 infrared Raman spectrometer from the Bruker Germany, adopting KBr pellets in the range 4000-400 cm<sup>-1</sup>. X-ray powder diffraction(XRPD) were conducted by a Bruker D8 ADVANCE instrument using Cu-K $\alpha$  radiation ( $\lambda$  =1.54056 Å) at room temperatur. Scanning electron microscope (SEM) was performed on Hitachi SU-70. The content analysis of C, H, and N were tested by the American Flash EA1112 CHN elemental analyzer, and B, W, and Ag were tested by the US 7500CX inductively coupled plasma mass spectrometer. The Diamond 6300 differential thermal analyzer from Perkin-Elmer company in the United States is used, with  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> as the reference, platinum crucible, heating rate is 10°C min<sup>-1</sup>, static air atmosphere.

**X-ray crystallography.** The compound was fastened to the glass filament for collecting the diffraction data at 296(2) Bruker SMART CCD detector with graphite monochromatic MoKa radiation ( $\lambda$ = 0.71073Å). Crystal structure of compound is determined by direct methods and refined by means of full-matrix least-squares on on F<sup>2</sup> (Table S3). Selected bond lengths (Å) and angles were listed in Table S4.

electrochemical characterization for Supercapacitor. The electrochemical performance of the prepared electrode materials were carried out on the CHI660E electrochemical workstation by using a three-electrode system in 1 M  $H_2SO_4$  solution. A Pt plate and the Ag/AgCl (3M KCl) electrode were usued as the counter electrode and reference electrode, respectively. The as-prepared glassy carbon electrode was employed as the working electrode. The main methods used are cyclic voltammetry, galvanostatic charge-discharge measurement and electrochemical impedance spectroscopy.



Fig. S1 The twelve-membered ring view of compound.



Fig. S2 IR spectra of compound.



Fig. S3 TG curve of compound.



Fig. S4 XRD spectra of compound.



Fig. S5 The plot of log of current density vs. the log of scan rate in the scan rate range of 30-80mV s<sup>-1</sup> for 1-GCE.



**Fig. S6** The plot of the total charge stored(*q*) vs. the reciprocal of the square root of the scan rate for **1**-GCE.



**Fig. S7** illustration of the contribution from the capacitive( $Q_s$ ) and diffusion-controlled( $Q_d$ ) charge to the total charge stored at different scan rates for **1**-GCE.



Fig. S8 XRD patterns before and after recycling reactions.

| Compound                           | 1                                        |
|------------------------------------|------------------------------------------|
| Chemical formula                   | $C_{120}H_{80}Ag_6B_2N_{20}O_{80}W_{24}$ |
| Formula weight                     | 8163.05                                  |
| Т/К                                | 296(2)                                   |
| Crystal system                     | Triclinic                                |
| Space group                        | P-1                                      |
| a/Å                                | 14.3019(10)                              |
| b/Å                                | 14.9420(11)                              |
| c/Å                                | 21.4307(15)                              |
| α/°                                | 74.0570(10)                              |
| β/                                 | 86.3790(10)                              |
| γ/°                                | 65.4190(10)                              |
| V/Å <sup>3</sup>                   | 3997.6(5)                                |
| Z                                  | 1                                        |
| Dcalc/Mg m <sup>-3</sup>           | 3.391                                    |
| μ/mm <sup>-1</sup>                 | 17.996                                   |
| F(000)                             | 3648.0                                   |
| θ range/°                          | 2.335-28.332                             |
| Reflections                        | 38592/19323                              |
| collected/ unique                  | [R(int) = 0.0331]                        |
| Data/restraints/parametrs          | 19323/12/1135                            |
| GOF on F <sup>2</sup>              | 1.022                                    |
| $R_1^{a}/wR_2[I > 2\sigma(I)]^{b}$ | 0.0415/0.1248                            |
| Δpfin (max/min), e Å <sup>-3</sup> | 3.396/-7.023                             |

 Table S1
 Crystal data and structure refinement data for 1

 ${}^{a}R_{1} = \sum ||F_{0}| - |F_{C}|| / \sum |F_{0}| . {}^{b}wR_{2} = \sum [w(F_{0}{}^{2} - F_{C}{}^{2})^{2}] / \sum [w(F_{0}{}^{2})^{2}]^{1/2}.$ 

| B(1)-O(9)  | 1.528(11) | B(1)-O(11)#1 | 1.528(12 | B(1)-O(12) | 1.544(11) |
|------------|-----------|--------------|----------|------------|-----------|
| B(1)-O(14) | 1.517(12) | W(1)-O(1)    | 1.926(7) | W(1)-O(3)  | 1.904(7)  |
| W(1)-O(12) | 2.367(6)  | W(1)-O(15)   | 1.877(7) | W(1)-O(25) | 1.710(8)  |

Table S2Selected bond lengths (Å) and bond angles ( $^{\circ}$ ) of 1

| W(1)-O(31)       | 1.927(7)  | W(2)-O(1)        | 1.932(7) | W(2)-O(2)        | 1.884(7)  |
|------------------|-----------|------------------|----------|------------------|-----------|
| W(2)-O(4)        | 1.871(7)  | W(2)-O(6)        | 1.757(7) | W(2)-O(8)        | 1.919(7)  |
| W(2)-O(12)       | 2.285(7)  | W(3)-O(8)        | 1.916(8) | W(3)-O(10)       | 1.914(7)  |
| W(3)-O(12)       | 2.392(7)  | W(3)-O(23)       | 1.893(7) | W(3)-O(31)       | 1.905(7)  |
| W(3)-O(32)       | 1.704(7)  | W(4)-O(14)       | 2.354(7) | W(4)-O(16)       | 1.910(7)  |
| W(4)-O(23)       | 1.908(7)  | W(4)-O(26)       | 1.906(8) | W(4)-O(29)       | 1.910(8)  |
| W(4)-O(39)       | 1.709(9)  | W(5)-O(3)        | 1.897(7) | W(5)-O(7)        | 1.728(8)  |
| W(5)-O(11)       | 2.353(7)  | W(5)-O(22)       | 1.887(8) | W(5)-O(24)       | 1.902(8)  |
| W(5)-O(40)       | 1.921(7)  | W(6)-O(2)        | 1.933(7) | W(6)-O(9)        | 2.381(7)  |
| W(6)-O(19)       | 1.904(7)  | W(6)-O(20)       | 1.907(8) | W(6)-O(30)       | 1.708(8)  |
| W(6)-O(33)       | 1.901(7)  | W(7)-O(5)        | 1.903(7) | W(7)-O(9)        | 2.395(6)  |
| W(7)-O(17)       | 1.919(7)  | W(7)-O(21)       | 1.900(7) | W(7)-O(33)       | 1.928(8)  |
| W(7)-O(34)       | 1.713(7)  | W(8)-O(5)        | 1.895(7) | W(8)-O(11)       | 2.389(6)  |
| W(8)-O(13)       | 1.880(8)  | W(8)-O(18)       | 1.931(8) | W(8)-O(28)       | 1.725(8)  |
| W(8)-O(40)       | 1.912(7)  | W(9)-O(4)        | 1.922(7) | W(9)-O(11)       | 2.348(7)  |
| W(9)-O(18)       | 1.898(7)  | W(9)-O(19)       | 1.894(7) | W(9)-O(24)       | 1.922(7)  |
| W(9)-O(35)       | 1.707(8)  | W(10)-O(14)      | 2.376(7) | W(10)-O(15)      | 1.906(7)  |
| W(10)-O(22)      | 1.903(8)  | W(10)-O(26)      | 1.917(8) | W(10)-O(27)      | 1.916(7)  |
| W(10)-O(36)      | 1.706(8)  | W(11)-O(9)       | 2.316(6) | W(11)-O(10)      | 1.874(7)  |
| W(11)-O(17)      | 1.916(7)  | W(11)-O(20)      | 1.931(8) | W(11)-O(29)      | 1.881(8)  |
| W(11)-O(37)      | 1.749(8)  | W(12)-O(13)      | 1.911(8) | W(12)-O(14)      | 2.393(7)  |
| W(12)-O(16)      | 1.905(8)  | W(12)-O(21)      | 1.889(7) | W(12)-O(27)      | 1.916(7)  |
| W(12)-O(38)      | 1.713(8)  | Ag(1)-N(8)       | 2.357(11 | Ag(1)-N(10)      | 2.326(11) |
| Ag(2)-N(2)       | 1.997(10) | Ag(2)-N(3)       | 2.032(9) | Ag(2)-N(5)       | 2.014(9)  |
| Ag(2)-N(7)       | 1.987(10) | Ag(3)-N(1)       | 1.970(9) | Ag(3)-N(4)       | 1.963(9)  |
| Ag(3)-N(6)       | 2.154(10) | Ag(3)-N(9)       | 2.043(10 | Ag(1)-O(7)       | 2.298(8)  |
| Ag(1)-O(25)      | 2.638     | Ag(2)-O(37)      | 2.136(8) | Ag(3)-O(6)       | 2.077(8)  |
| O(1)-W(1)-O(12)  | 74.9(3)   | O(1)-W(1)-O(31)  | 88.3(3)  | O(3)-W(1)-O(1)   | 89.9(3)   |
| O(3)-W(1)-O(12)  | 85.9(3)   | O(3)-W(1)-O(31)  | 161.4(3) | O(15)-W(1)-O(1)  | 161.1(3)  |
| O(15)-W(1)-O(3)  | 86.8(3)   | O(15)-W(1)-O(12) | 86.3(3)  | O(15)-W(1)-O(31) | 89.0(3)   |
| O(25)-W(1)-O(1)  | 97.6(4)   | O(25)-W(1)-O(3)  | 101.8(3) | O(25)-W(1)-O(12) | 169.4(3)  |
| O(25)-W(1)-O(15) | 101.3(4)  | O(25)-W(1)-O(31) | 96.9(3)  | O(31)-W(1)-O(12) | 75.7(3)   |
| O(1)-W(2)-O(12)  | 76.8(3)   | O(2)-W(2)-O(1)   | 164.7(3) | O(2)-W(2)-O(8)   | 88.9(3)   |
| O(2)-W(2)-O(12)  | 87.9(3)   | O(4)-W(2)-O(1)   | 89.9(3)  | O(4)-W(2)-O(2)   | 88.4(3)   |
| O(4)-W(2)-O(8)   | 161.4(3)  | O(4)-W(2)-O(12)  | 85.2(3)  | O(6)-W(2)-O(1)   | 92.8(3)   |
| O(6)-W(2)-O(2)   | 102.5(3)  | O(6)-W(2)-O(4)   | 99.2(3)  | O(6)-W(2)-O(8)   | 99.3(3)   |
| O(6)-W(2)-O(12)  | 168.8(3)  | O(8)-W(2)-O(1)   | 87.9(3)  | O(8)-W(2)-O(12)  | 76.3(3)   |
| O(8)-W(3)-O(12)  | 73.8(3)   | O(10)-W(3)-O(8)  | 88.4(3)  | O(10)-W(3)-O(12) | 84.2(3)   |
| O(23)-W(3)-O(8)  | 159.3(3)  | O(23)-W(3)-O(10) | 85.9(3)  | O(23)-W(3)-O(12) | 85.9(3)   |
| O(23)-W(3)-O(31) | 89.1(3)   | O(31)-W(3)-O(8)  | 89.4(3)  | O(31)-W(3)-O(10) | 159.4(3)  |
| O(31)-W(3)-O(12) | 75.5(3)   | O(32)-W(3)-O(8)  | 98.9(4)  | O(32)-W(3)-O(10) | 101.1(3)  |
| O(32)-W(3)-O(12) | 170.9(3)  | O(32)-W(3)-O(23) | 101.8(4) | O(32)-W(3)-O(31) | 99.5(3)   |
| O(16)-W(4)-O(14) | 76.2(3)   | O(23)-W(4)-O(14) | 85.1(3)  | O(23)-W(4)-O(16) | 160.9(3)  |
| O(23)-W(4)-O(29) | 85.7(3)   | O(26)-W(4)-O(14) | 76.4(3)  | O(26)-W(4)-O(16) | 88.4(3)   |
| O(26)-W(4)-O(23) | 91.1(3)   | O(26)-W(4)-O(29) | 160.8(3) | O(29)-W(4)-O(14) | 84.5(3)   |

| 0(29) - W(4) - 0(16) | 88 5(3)  | $O(30)_{M}(A)_{O}(1A)$ | 172 2(2) | $O(30)_{W(A)}_{O(16)}$ | 98 2(4)  |
|----------------------|----------|------------------------|----------|------------------------|----------|
| O(39)-W(4)-O(23)     | 100.7(4) | O(39)-W(4)-O(26)       | 99.8(4)  | O(39)-W(4)-O(29)       | 99.3(4)  |
| Q(3)-W(5)-Q(11)      | 86.8(3)  | O(3)-W(5)-O(24)        | 90.7(3)  | Q(3)-W(5)-Q(40)        | 162.0(3) |
| 0(7)-W(5)-O(3)       | 101.9(3) | O(7)-W(5)-O(11)        | 170.5(3) | Q(7)-W(5)-Q(22)        | 99.1(4)  |
| Q(7)-W(5)-Q(24)      | 100.2(4) | O(7)-W(5)-O(40)        | 96.0(3)  | O(22)-W(5)-O(3)        | 86.4(3)  |
| O(22)-W(5)-O(11)     | 85.1(3)  | O(22)-W(5)-O(24)       | 160.6(3) | O(22)-W(5)-O(40)       | 89.0(3)  |
| O(24)-W(5)-O(11)     | 75.6(3)  | O(24)-W(5)-O(40)       | 87.9(3)  | O(40)-W(5)-O(11)       | 75.4(3)  |
| O(2)-W(6)-O(9)       | 84.8(3)  | O(19)-W(6)-O(2)        | 85.3(3)  | O(19)-W(6)-O(9)        | 84.8(3)  |
| O(19)-W(6)-O(20)     | 159.4(3) | O(20)-W(6)-O(2)        | 89.2(3)  | O(20)-W(6)-O(9)        | 74.9(3)  |
| O(30)-W(6)-O(2)      | 98.8(3)  | O(30)-W(6)-O(9)        | 173.3(3) | O(30)-W(6)-O(19)       | 101.1(4) |
| O(30)-W(6)-O(20)     | 99.4(4)  | O(30)-W(6)-O(33)       | 100.7(4) | O(33)-W(6)-O(2)        | 160.5(3) |
| O(33)-W(6)-O(9)      | 76.1(3)  | O(33)-W(6)-O(19)       | 89.1(3)  | O(33)-W(6)-O(20)       | 89.4(3)  |
| O(5)-W(7)-O(9)       | 85.6(3)  | O(5)-W(7)-O(17)        | 160.2(3) | O(5)-W(7)-O(33)        | 88.9(3)  |
| O(17)-W(7)-O(9)      | 74.7(3)  | O(17)-W(7)-O(33)       | 87.9(3)  | O(21)-W(7)-O(5)        | 86.5(3)  |
| O(21)-W(7)-O(9)      | 84.3(3)  | O(21)-W(7)-O(17)       | 89.6(3)  | O(21)-W(7)-O(33)       | 159.3(3) |
| O(33)-W(7)-O(9)      | 75.2(3)  | O(34)-W(7)-O(5)        | 100.2(3) | O(34)-W(7)-O(9)        | 172.3(3) |
| O(34)-W(7)-O(17)     | 99.5(4)  | O(34)-W(7)-O(21)       | 101.0(4) | O(34)-W(7)-O(33)       | 99.6(4)  |
| O(5)-W(8)-O(11)      | 84.6(3)  | O(5)-W(8)-O(18)        | 87.3(3)  | O(5)-W(8)-O(40)        | 159.3(3) |
| O(13)-W(8)-O(5)      | 88.4(3)  | O(13)-W(8)-O(11)       | 85.5(3)  | O(13)-W(8)-O(18)       | 160.2(3) |
| O(13)-W(8)-O(40)     | 89.5(3)  | O(18)-W(8)-O(11)       | 74.8(3)  | O(28)-W(8)-O(5)        | 100.8(4) |
| O(28)-W(8)-O(11)     | 171.9(3) | O(28)-W(8)-O(13)       | 100.6(4) | O(28)-W(8)-O(18)       | 99.2(4)  |
| O(28)-W(8)-O(40)     | 99.8(4)  | O(40)-W(8)-O(11)       | 74.7(3)  | O(40)-W(8)-O(18)       | 87.7(3)  |
| O(4)-W(9)-O(11)      | 83.3(3)  | O(4)-W(9)-O(24)        | 87.2(3)  | O(18)-W(9)-O(4)        | 159.7(3) |
| O(18)-W(9)-O(11)     | 76.4(3)  | O(18)-W(9)-O(24)       | 89.2(3)  | O(19)-W(9)-O(4)        | 86.0(3)  |
| O(19)-W(9)-O(11)     | 86.2(3)  | O(19)-W(9)-O(18)       | 91.1(3)  | O(19)-W(9)-O(24)       | 161.0(3) |
| O(24)-W(9)-O(11)     | 75.4(3)  | O(35)-W(9)-O(4)        | 100.1(4) | O(35)-W(9)-O(11)       | 173.4(3) |
| O(35)-W(9)-O(18)     | 100.2(4) | O(35)-W(9)-O(19)       | 99.6(4)  | O(35)-W(9)-O(24)       | 99.1(4)  |
| O(15)-W(10)-O(14)    | 84.1(3)  | O(15)-W(10)-O(26       | 89.3(3)  | O(15)-W(10)-O(27)      | 159.8(3) |
| O(22)-W(10)-O(14)    | 84.3(3)  | O(22)-W(10)-O(15       | 86.7(3)  | O(22)-W(10)-O(26)      | 159.8(3) |
| O(22)-W(10)-O(27)    | 88.9(3)  | O(26)-W(10)-O(14       | 75.6(3)  | O(27)-W(10)-O(14)      | 75.9(3)  |
| O(27)-W(10)-O(26)    | 88.1(3)  | O(36)-W(10)-O(14       | 173.5(3) | O(36)-W(10)-O(15)      | 100.7(4) |
| O(36)-W(10)-O(22)    | 100.3(4) | O(36)-W(10)-O(26       | 99.8(4)  | O(36)-W(10)-O(27)      | 99.5(4)  |
| O(10)-W(11)-O(9)     | 85.9(3)  | O(10)-W(11)-O(17       | 162.6(3) | O(10)-W(11)-O(20)      | 88.7(3)  |
| O(10)-W(11)-O(29)    | 88.5(3)  | O(17)-W(11)-O(9)       | 76.8(3)  | O(17)-W(11)-O(20)      | 87.6(3)  |
| O(20)-W(11)-O(9)     | 76.1(3)  | O(29)-W(11)-O(9)       | 86.6(3)  | O(29)-W(11)-O(17)      | 90.0(3)  |
| O(29)-W(11)-O(20)    | 162.7(3) | O(37)-W(11)-O(9)       | 172.5(3) | O(37)-W(11)-O(10)      | 98.5(3)  |
| O(37)-W(11)-O(17)    | 98.8(3)  | O(37)-W(11)-O(20       | 97.9(3)  | O(37)-W(11)-O(29)      | 99.5(4)  |
| O(13)-W(12)-O(14)    | 85.6(3)  | O(13)-W(12)-O(27       | 88.8(3)  | O(16)-W(12)-O(13)      | 160.8(3) |
| O(16)-W(12)-O(14)    | 75.3(3)  | O(16)-W(12)-O(27       | 88.2(3)  | O(21)-W(12)-O(13)      | 86.1(3)  |
| O(21)-W(12)-O(14)    | 84.3(3)  | O(21)-W(12)-O(16       | 90.1(3)  | O(21)-W(12)-O(27)      | 159.4(3) |
| O(27)-W(12)-O(14)    | 75.4(3)  | O(38)-W(12)-O(13       | 100.7(4) | O(38)-W(12)-O(14)      | 172.5(3) |
| O(38)-W(12)-O(16)    | 98.5(4)  | O(38)-W(12)-O(21       | 100.0(4) | O(38)-W(12)-O(27)      | 100.5(4) |
| N(10)-Ag(1)-N(8)     | 71.5(4)  | N(2)-Ag(2)-N(3)        | 82.5(4)  | N(2)-Ag(2)-N(5)        | 99.8(4)  |
| N(5)-Ag(2)-N(3)      | 141.4(4) | N(7)-Ag(2)-N(2)        | 171.3(4) | N(7)-Ag(2)-N(3)        | 101.7(4) |
| N(7)-Ag(2)-N(5)      | 81.8(4)  | N(1)-Ag(3)-N(6)        | 81.1(4)  | N(1)-Ag(3)-N(9)        | 93.2(4)  |

| N(4)-Ag(3)-N(1)  | 174.8(4) | N(4)-Ag(3)-N(6)   | 98.2(4)  | N(4)-Ag(3)-N(9)  | 82.0(4)  |
|------------------|----------|-------------------|----------|------------------|----------|
| N(9)-Ag(3)-N(6)  | 104.1(4) | N(8)-Ag(1)-O(7)   | 121.6(3) | N(10)-Ag(1)-O(7) | 156.2(3) |
| N(8)-Ag(1)-O(25) | 146.4    | N(10)-Ag(1)-O(25) | 109.6    | N(2)-Ag(2)-O(37) | 84.5(3)  |
| N(3)-Ag(2)-O(37) | 93.6(3)  | N(5)-Ag(2)-O(37)  | 125.0(4) | N(7)-Ag(2)-O(37) | 87.5(4)  |
| N(1)-Ag(3)-O(6)  | 94.1(3)  | N(4)-Ag(3)-O(6)   | 91.1(4)  | N(6)-Ag(3)-O(6)  | 104.4(4) |
| N(9)-Ag(3)-O(6)  | 151.3(4) | O(7)-Ag(1)-O(25)  | 71.4     |                  |          |

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z; #2 -x+1/2,-y+1/2,-z

|    | Electrode material                                                                                                                    | Electrolyte                          | Scan rate /<br>Current<br>density | Specific<br>capacitance | Ref. |
|----|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|-------------------------|------|
| 1  | Compound 1                                                                                                                            | 1 M H <sub>2</sub> SO <sub>4</sub>   | 2.16 A g <sup>-1</sup>            | 1647 F g <sup>-1</sup>  | This |
|    |                                                                                                                                       |                                      |                                   |                         | work |
| 2  | NENU-5/PPy /60                                                                                                                        | 1 M H <sub>2</sub> SO <sub>4</sub>   | 2 mA cm <sup>-2</sup>             | 508.6 F g <sup>-1</sup> | 1    |
| 3  | [PW <sub>11</sub> CuO <sub>39</sub> ] <sup>5-</sup> @Ru-rGO                                                                           | 0.5 M HOAC                           | 0.2 A g <sup>-1</sup>             | 705 F g <sup>-1</sup>   | 2    |
| 4  | [Ag <sub>5</sub> (brtmb) <sub>4</sub> ][VW <sub>10</sub> V <sub>2</sub> O <sub>40</sub> ]                                             | 1 M H <sub>2</sub> SO <sub>4</sub>   | 110 A g <sup>-1</sup>             | 206 F g <sup>-1</sup>   | 3    |
| 5  | (PM012/PANI/TIN NWA)                                                                                                                  | 1 M H <sub>2</sub> SO <sub>4</sub>   | 1 A g <sup>-1</sup>               | 469 F g <sup>-1</sup>   | 4    |
| 6  | [H(C <sub>10</sub> H <sub>10</sub> N <sub>2</sub> )Cu <sub>2</sub> ][PMo <sub>12</sub> O <sub>40</sub> ]                              | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 1 A g <sup>-1</sup>               | 287 F g <sup>-1</sup>   | 5    |
| 7  | [H(C <sub>10</sub> H <sub>10</sub> N <sub>2</sub> )Cu <sub>2</sub> ][PW <sub>12</sub> O <sub>40</sub> ]                               | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 1 A g <sup>-1</sup>               | 153.4 F g <sup>-1</sup> | 5    |
| 8  | [Cu <sup>I</sup> H <sub>2</sub> (C <sub>12</sub> H <sub>12</sub> N <sub>6</sub> )(PMO <sub>12</sub> O <sub>40</sub> )]·               | 1 M H <sub>2</sub> SO <sub>4</sub>   | 3 A g <sup>-1</sup>               | 249 F g <sup>-1</sup>   | 6    |
|    | $[(C_6H_{15}N)(H_2O)_2]$                                                                                                              |                                      |                                   |                         |      |
| 9  | HPW/rGO                                                                                                                               | 5 M H <sub>2</sub> SO <sub>4</sub>   | 5 mV s⁻¹                          | 337.5 F g <sup>-1</sup> | 7    |
| 10 | PAni/H <sub>3</sub> PMo <sub>12</sub> O <sub>40</sub>                                                                                 | 1 M HClO <sub>4</sub>                |                                   | 120 F g <sup>-1</sup>   | 8    |
| 11 | SWCNT-TBA-PV <sub>2</sub> Mo <sub>10</sub>                                                                                            | 1 M H <sub>2</sub> SO <sub>4</sub>   | 0.1 A g <sup>-1</sup>             | 444 F g⁻¹               | 9    |
| 12 | [Cu <sup>I</sup> (btx)] <sub>4</sub> [SiW <sub>12</sub> O <sub>40</sub> ]                                                             | 1 M H <sub>2</sub> SO <sub>4</sub>   | 3 A g <sup>-1</sup>               | 110.3 F g <sup>-1</sup> | 10   |
| 13 | AC/PW <sub>12</sub> O <sub>40</sub>                                                                                                   | 1 M H <sub>2</sub> SO <sub>4</sub>   | 10 mV s <sup>-1</sup>             | 254 F g <sup>-1</sup>   | 11   |
| 14 | $[Ag_5(C_2H_2N_3)_6][H_5SiW_{12}O_{40}]$                                                                                              | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 6 A g <sup>-1</sup>               | 29.8 F g <sup>-1</sup>  | 12   |
| 15 | $[Ag_5(C_2H_2N_3)_6][H_5SiMo_{12}O_{40}]$                                                                                             | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 0.5A g <sup>-1</sup>              | 155.0 F g <sup>-1</sup> | 12   |
| 16 | [Ag <sub>5</sub> (C <sub>2</sub> H <sub>2</sub> N <sub>3</sub> ) <sub>6</sub> ][H <sub>5</sub> SiMo <sub>12</sub> O <sub>40</sub> ]@1 | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 0.5A g <sup>-1</sup>              | 230.2 F g <sup>-1</sup> | 12   |
|    | 5%GO-based                                                                                                                            |                                      |                                   |                         |      |
|    | electrode                                                                                                                             |                                      |                                   |                         |      |
| 17 | [Cu <sup>1</sup> ₄H₂(btx)₅(PMo12O40)2]·                                                                                               | 1 M H <sub>2</sub> SO <sub>4</sub>   | 2 A g <sup>-1</sup>               | 237.0 F g <sup>-1</sup> | 13   |
|    | 2H <sub>2</sub> O                                                                                                                     |                                      |                                   |                         |      |
| 18 | $[Cu_{4}^{I}H_{2}(btx)_{5}(PW_{12}O_{40})_{2}]$                                                                                       | 1 M H <sub>2</sub> SO <sub>4</sub>   | 2 A g <sup>-1</sup>               | 100.0 F g <sup>-1</sup> | 13   |
|    | 2H <sub>2</sub> O                                                                                                                     |                                      |                                   |                         |      |
| 19 | RGO/PIL/PMo <sub>12</sub> O <sub>40</sub>                                                                                             | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10 mV s <sup>-1</sup>             | 456 F g <sup>-1</sup>   | 14   |
| 20 | HT-RGO-PM0 <sub>12</sub> O <sub>40</sub>                                                                                              | 1 M H <sub>2</sub> SO <sub>4</sub>   | 10 mV s⁻¹                         | 276 F g <sup>-1</sup>   | 15   |

 Table S3
 Keggin-based electrode materials

| 21 | AC/PMo <sub>12</sub>                     | 1 M H <sub>2</sub> SO <sub>4</sub> | 2 A g <sup>-1</sup>    | 160 F g <sup>-1</sup> | 16 |
|----|------------------------------------------|------------------------------------|------------------------|-----------------------|----|
|    |                                          |                                    |                        | ( for the             |    |
|    |                                          |                                    |                        | Positive              |    |
|    |                                          |                                    |                        | Electrode)            |    |
|    |                                          |                                    |                        | and                   |    |
|    |                                          |                                    |                        | 183 F g <sup>-1</sup> |    |
|    |                                          |                                    |                        | (for the              |    |
|    |                                          |                                    |                        | negative              |    |
|    |                                          |                                    |                        | hybrid                |    |
|    |                                          |                                    |                        | Electrode)            |    |
| 22 | AC@PMo <sub>12</sub> O <sub>40</sub>     | 1 M [Bmim]                         | 1 mV s <sup>-1</sup>   | 223 F g <sup>-1</sup> | 17 |
|    |                                          | H <sub>2</sub> SO <sub>4</sub>     |                        |                       |    |
| 23 | PC 5-1-PM0 <sub>12</sub>                 | 1 M H <sub>2</sub> SO <sub>4</sub> | 200 mV s <sup>-1</sup> | 361F g <sup>-1</sup>  | 18 |
| 24 | PMo <sub>10</sub> V <sub>2</sub> @ZIF-67 | ЗМ КОН                             | 2 A g <sup>-1</sup>    | 475 F g⁻¹             | 19 |

## Table S4 Other POMs-based electrode materials

|    | Electrode material                                                                                                                                                      | Electrolyte                                                                                                                                                                                                     | Scan rate /<br>Current<br>density | Specific<br>capacitance | Ref. |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|------|
| 1  | $(H_2bpe)(Hbpe)_2\{[Cu(pzta)(H_2O] $<br>$[P_2W_{18}O_{62}]\} \cdot 5H_2O$                                                                                               | 1 M H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                              | 5 A g <sup>-1</sup>               | 168 F g <sup>-1</sup>   | 20   |
| 2  | $[{K(H_2O)}_2{Cu_2(biim)_2}_2 (P_2W_{18}O_{62})]$                                                                                                                       | 1 M H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                              | 0.2 A g <sup>-1</sup>             | 95.7 F g <sup>-1</sup>  | 21   |
| 3  | AC/P <sub>2</sub> Mo <sub>18</sub>                                                                                                                                      | 1 M H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                              | 6 A g <sup>-1</sup>               | 275F g <sup>-1</sup>    | 22   |
| 4  | [Cu <sup>II</sup> <sub>2</sub> (bipy)(H <sub>2</sub> O) <sub>4</sub> (C <sub>6</sub> H <sub>5</sub> PO <sub>3</sub> ) <sub>2</sub><br>Mo <sub>5</sub> O <sub>15</sub> ] | 0.5 M H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                            | 2 A g <sup>-1</sup>               | 160.9F g <sup>-1</sup>  | 23   |
| 5  | {Mo <sub>132</sub> }-rGO                                                                                                                                                | 1 M Li <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                             | A g <sup>-1</sup>                 | 617.3F g <sup>-1</sup>  | 24   |
| 6  | [Cu <sup>l</sup> <sub>2</sub> (bnie) <sub>2</sub> ] <sub>2</sub> (β-Mo <sub>8</sub> O <sub>26</sub> )                                                                   | 4.0 M KOH                                                                                                                                                                                                       | 1 A g <sup>-1</sup>               | 828F g <sup>-1</sup>    | 25   |
| 7  | $\label{eq:cul2} \begin{split} & [Cu^l_2(\beta\text{-}Mo_8O_{26}\ )(bnie)_2] \\ & [Cu_2(bnie)_2\ ] \end{split}$                                                         | 4.0 M KOH                                                                                                                                                                                                       | 1 A g <sup>-1</sup>               | 800F g <sup>-1</sup>    | 25   |
| 8  | MoS/rGO                                                                                                                                                                 | 0.5 M Na <sub>2</sub> SO <sub>4</sub> +<br>H <sub>2</sub> SO <sub>4</sub>                                                                                                                                       | 10 mV s <sup>-1</sup>             | 870 F g <sup>-1</sup>   | 26   |
| 9  | [Ru(bpy) <sub>3</sub> ] <sub>3.33</sub> P₂Mo <sub>18</sub> O <sub>62</sub> ·mH₂O                                                                                        | pH=7<br>(0.25 M total salt<br>containing 0.05<br>M KH <sub>2</sub> PO <sub>4</sub> , 0.05<br>M K <sub>2</sub> HPO <sub>4</sub> , 0.1 M<br>NaCl, 0.025 M<br>MgCl <sub>2</sub> and 0.025<br>M CaCl <sub>2</sub> ) | 0.2 A g <sup>-1</sup>             | 125 F g <sup>-1</sup>   | 27   |
| 10 | [Ru(bpy) <sub>3</sub> ] <sub>3</sub> P <sub>2</sub> Mo <sub>18</sub> O <sub>62</sub> ·nH <sub>2</sub> O                                                                 | -                                                                                                                                                                                                               | 0.2 A g <sup>-1</sup>             | 68 F g <sup>-1</sup>    | 27   |

| 11 | Na <sub>6</sub> V <sub>10</sub> O <sub>28</sub>           | 1M LiClO <sub>4</sub> in            | 0.1 A g <sup>-1</sup> | 354 F g <sup>-1</sup>   | 28 |
|----|-----------------------------------------------------------|-------------------------------------|-----------------------|-------------------------|----|
|    |                                                           | propylene                           |                       |                         |    |
|    |                                                           | carbonate                           |                       |                         |    |
| 12 | {Ag <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub> }@Ag-MOF | 1 M Na <sub>2</sub> SO <sub>4</sub> | 1 A g <sup>-1</sup>   | 320.8 F g <sup>-1</sup> | 29 |
| 13 | Ni(OH) <sub>2</sub> –POV thin films                       | 2 М КОН                             | 1 A g <sup>-1</sup>   | 1440 F g <sup>-1</sup>  | 30 |
|    | (LNHV-1)                                                  |                                     |                       |                         |    |
| 14 | LNHV-2.5                                                  | 2 М КОН                             | 1 A g <sup>-1</sup>   | 637 F g <sup>-1</sup>   | 30 |
| 15 | LNHV-3                                                    | 2 М КОН                             | 1 A g <sup>-1</sup>   | 536 F g <sup>-1</sup>   | 30 |

## Reference

- Z. Liu, W. Yao, H. Gan, C. Sun, Z. Su and X. Wang, *Chem. Eur. J.*, 2019, 25, 16617 16624.
   DOI:10.1002/chem.201903664
- (2) A. Ensafi, E. Heydari Soureshjani and B. Rezaei, *Chem. Eng. J.*, 2017, **330**, 1109 1118.
   DOI: 10.1016/j.cej.2017.08.062
- (3) G. Wang, T. Chen, X. Wang, H. Ma and H. Pang, Eur. J. Inorg. Chem., 2017, 45, 5350 5355. DOI: 10.1002/ejic.201701031
- (4) L. Lu, Y. Xie, New J. Chem., 2017,41, 335 346. DOI:10.1039/C6NJ02368A
- (5) S. Roy, V. Vemuri, S. Maiti, K. Manoj, *Inorg. Chem.*, 2018, **57**, 12078–12092. <u>DOI:</u> <u>10.1021/acs.inorgchem.8b01631</u>
- (6) D. Chai, J. Xin, B. Li, H. Pang, H. Ma, K. Li, B. Xiao, X. Wang and L. Tan, *Dalton Trans.*, 2019, 48, 13026 13033. DOI: 10.1039/C9DT02420D
- R. Li, C. He, L. Cheng, G. Lin, G. Wang, D. Shi, R. Kowk YiuLic and Y. Yang, *Composites Part B: Engineering*, 2017, **121**, 75 82. DOI:10.1016/j.compositesb.2017.03.026
- (8) A. Cuentas Gallegos, M. Lira Cantú, N. Casañ Pastor and P. Gómez Romero, Adv. Funct, Mater., 2005, 15, 1125 1133. DOI:https://doi.org/10.1002/adfm.200400326
- (9) H. Chen, R. Oweini, J. Friedl, C. Lee, L. Li, U. Kortz, *Nanoscale*, 2015, **7**, 7934 7941. DOI:10.1039/c4nr07528e
- (10) D. Chai, Y. Hou, K. O'Halloran, H. Pang, H. Ma, G. Wang and X. Wang, *Chem Electro Chem*, 2018, **5**, 3443 3450. <u>DOI: 10.1002/celc.201801081</u>
- (11) J. Guevar, V. Ruiz and P. Romero, *J. Mater. Chem. A*, 2014, **2**, 1014 102. DOI:10.1039/c3ta14455k
- (12) Y. Hou, D. Chai, B. Li, H. Pang, H. Ma, X. Wang and L. Tan, ACS Appl. Mater. Interfaces, 2019, 11, 20845 20853. DOI: 10.1021/acsami.9b04649
- (13) D. Chai, C. Gómez García, B. Li, H. Pang, H. Ma, X. Wang and L. Tan, *Chem Eng J*, 2019, **373**, 587 597. DOI:10.1016/j.cej.2019.05.084
- (14) M. Yang, B. Choi, S. Jung, Y. Han, Y. Huh and S. Lee, *Adv. Funct. Mater.*, 2014, 24, 7301 7309.
   DOI:10.1002/adfm.201401798
- (15) J. Guevara, V. Ruiza, and P. Romero, *Phys. Chem. Chem. Phys.*, 2014, **16**, 20411 20414. DOI:10.1039/C4CP03321C

- (16) V. Ruiz, J. Guevara and P. Romero, *Electrochem Commun*, 2012, **24**, 35 38. DOI:10.1016/j.elecom.2012.08.003
- (17) C. Hu, E. Zhao, N. Nitta, A. Magasinski, G. Berdichevsky and G. Yushin, *J. Power Source*, 2016, **326**, 569 574. DOI:10.1016/j.jpowsour.2016.04.036
- (18) M. Genovese, K. Lian, J. Mater. Chem. A., 2017, 5, 3939 3947. DOI:10.1039/C6TA10382K
- (19) A. Mohamed, M. Ramadan, N. Ahmed, A. Abo. ElNaga, H. Alalawy, T. Zaki, S. Shaban, H. Hassan and N. Allam, *J. Energy Storage*, 2020, **28**, 101292. DOI:10.1016/j.est.2020.101292
- (20) G. Wang, T. Chen, S. Li, H. Pang and H. Ma, *Dalton Trans.*, 2017, **46**, 13897 13902. DOI:10.1039/C7DT02230A
- (21) J. Gao, L. Gong, X. Fan, K. Yu, Z. Zheng and B. Zhou, *ACS Appl. Nano Mater.*, 2020, **3**, 1497–1507. DOI: 10.1021/acsanm.9b02312
- (22) A. Mu, J. Li, W. Chen, X. Sang, Z. Su, E. Wang, *Inorg. Chem. Commun.*, 2015, 46, 149 152. DOI: <u>10.1016/j.inoche.2015.03.032</u>
- (23) B. R. Lu, S. B. Li, J. Pan, L. Zhang, J. J. Xin, Y. Chen and X. G. Tan, *Inorg. Chem.*, 2020, **59**, 1702–1714. DOI:10.1021/acs.inorgchem.9b02858
- (24) Y. Dong, L. Chen, W. Chen, X. Zheng, X. Wang and E. Wang, *Chem Asian J.*, 2018, **13**, 3304
   3313. DOI: 10.1002/asia.201801018
- (25) K. Wang, Z. Wang, S. Wang, Y. Chu, R. Xi, X. Zhang and H. Wu, *Chem. Eng. J.*, 2019, **367**, 239 248. DOI:10.1016/j.cej.2019.02.145
- (26) S. Zhang, R. Liu, S. Li, A. Dolbecq, P. Mialane, L. Suo, L. Bi, B. Zhang, T. Liu, C. Wu, L. Yan, Z. Su, G. Zhang and B. Keita, *J. Colloid Interf. Sci.*, 2018, **514**, 507 516.
   <u>DOI:10.1016/j.jcis.2017.12.039</u>
- (27) S. Chinnathambi, M. Ammam, *J. Power Sources*, 2015, **284**, 524 535. DOI:10.1016/j.jpowsour.2015.03.034
- (28) H. Chen, G. Wee, R. Al Oweini, J. Friedl, K. Tan, Y. Wang, C. Wong, *ChemPhysChem*, 2014, **15**, 2162 2169. <u>DOI:10.1002/cphc.201400091</u>
- (29) X. Zhao, L. Gong, C. Wang, C. Wang, K. Yu and B. Zhou, Chem. Eur. J., 2020, 26, 4613–4619. DOI:10.1002/chem.201905689
- (30) J. Gunjakar, A. Inamdar, B. Hou, S. Cha, S. Pawar, A. Abu Talha, H. Chavan, J. Kim, S. Cho, S. Lee, Y. Jo, H. Kim and H. Im, *Nanoscale*, 2018, **10**, 8953 8961. <u>DOI: 10.1039/c7nr09626g</u>