Supporting Information for

Expanding the NMR Toolkit for Biological Solids: Oxygen-17 Enriched Fmoc-Amino Acids

Brittney A. Klein¹, Dylan G. Tkachuk¹, Victor V. Terskikh² and Vladimir K. Michaelis^{1,*}

- 1. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- 2. Metrology, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
- $\hbox{$*$ Corresponding Author: vladimir.michaelis@ualberta.ca}\\$

Table S1. Average deviations of the computed vs. experimental ¹⁷O NMR parameters plotted in Figures 5 & S4 for the C**O** and C**O**H sites in the Fmoc-amino acids.

¹⁷ O Site	δ_{iso} (ppm)	Cq (MHz)	η	q _{zz} (a.u.)	q _{yy} (a.u.)	q _{xx} (a.u.)	Ω^1 (ppm)	κ	δ ₁₁ (ppm)	δ ₂₂ (ppm)	δ ₃₃ (ppm)
C O	47	0.4	0.11	0.07	0.10	0.07	77	0.32	64	97	20
С О Н	18	1.2	0.33	0.20	0.35	0.16	55	0.56	28	63	35

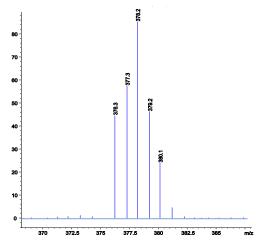
¹ The deviations were calculated using the re-evaluated experimental span values for the CO sites in Fmoc-L-valine and -leucine, which in turn were used to extract the CSA tensor components. All correlations were calculated using the equation: $[(\Sigma(calc. - expt.)^2)/(n)]^{1/2}$.

Table S2. Selection of basis sets for computing NMR parameters using density functional theory on crystal structure of FMOC-L-tyrosine, monohydrate.

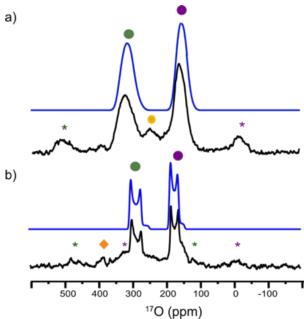
Basis set	¹⁷ O site	σ _{iso} (ppm)	σ ₃₃ (ppm)	σ ₂₂ (ppm)	σ11 (ppm)	C _Q (MHz)	η
DZP	COH	-41.571 155.200	281.028 256.063	-131.463 177.473	-274.278 32.065	7.88961 -7.94763	0.12270 0.37483
ZORA/DZP	COH	-39.327 156.896	281.867 243.562	-128.663 179.435	-271.184 33.372	7.89293 -7.54985	0.11949 0.37714
TZ2P	COH	-88.756 132.856	269.898 243.562	-188.846 164.261	-347.315 -9.255	8.85450 -9.07486	0.13684 0.36192
ZORA/TZ2P	COH	-86.815 134.330	270.438 245.223	-186.307 166.099	-344.576 -8.331	8.85790 -9.07075	0.13550 0.35039
QZ4P	COH	-96.012 125.903	269.361 237.160	-197.114 155.206	-360.283 -14.656	8.91513 -9.24279	0.13757 0.34899
ZORA/QZ4P	CO COH	-94.454 127.208	269.623 238.691	-194.977 156.840	-358.008 -13.907	8.92528 -9.25906	0.13409 0.36450

Table S3. Comparison of the computed ¹⁷O NMR parameters ¹ for Fmoc-L-tyrosine and -isoleucine obtained using their reported crystal structures with those obtained using different geometry-optimized structures.

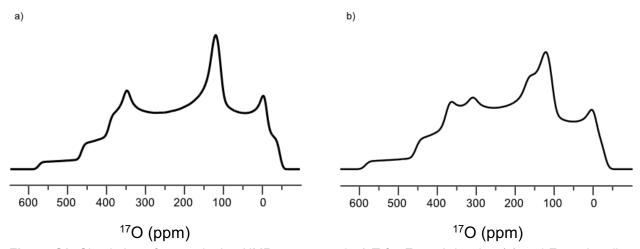
Structure ^{17}O $^{\sigma_{iso}}$ $^{\sigma_{33}}$ $^{\sigma_{22}}$ $^{\sigma_{11}}$ $^{\sigma_{11}}$ $^{\sigma_{12}}$								
Sample	Coordinates	site	(ppm)	(ppm)	(ppm)	(ppm)	C _Q (MHz)	η
	X-ray	CO	-86.815	270.438	-186.307	-344.576	8.85790	0.13550
	Λ-i ay	СОН	134.330	245.223	166.099	-8.331	-9.07075	0.35039
	ZORA/DZP	CO	-93.091	269.163	-206.649	-341.787	8.68533	0.13762
Fmoc-L-	ZOIVADZI	СОН	108.232	241.788	136.433	-53.524	-8.64595	0.57711
tyrosine	ZORA/TZ2P	CO	-93.091	260.277	-220.836	-318.558	8.85298	0.19300
	2010-(1221	СОН	112.222	243.997	142.508	-49.840	-8.70477	0.55091
		CO	-84.404	264.308	-219.903	-297.617	8.66492	0.15265
	ZORA/QZ4P	СОН	108.858	233.659	148.15	-55.234	-8.69706	0.50636
		CO	-85.878	281.835	-190.302	-349.168	8.93670	0.1735
	X-ray	СОН	151.609	263.304	207.206	-15.684	-8.38861	0.3534
		CO	-77.928	266.204	-212.547	-287.441	8.55007	0.12112
Fmoc-L-	ZORA/DZP	СОН	93.889	227.876	121.964	-68.172	-8.54004	0.53998
isoleucine		CO	-78.05	268.236	-215.276	-287.106	8.59598	0.13323
	ZORA/TZ2P	COH	96.387	229.723	125.097	-65.660	-8.59363	0.50872
		CO	-75.628	266.393	-211.022	-282.000	8.55424	0.12526
	ZORA/QZ4P	COH	99.299	230.27	127.273	-59.645	-8.62249	0.49025

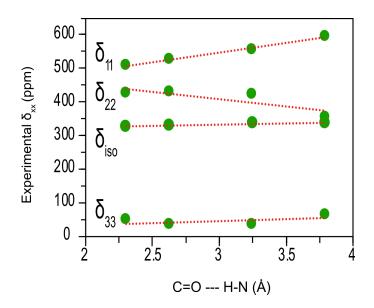

_

 $^{^{1}}$ All NMR parameters were computed using the ZORA/TZ2P basis set. The NMR parameters for the X-ray structure were obtained from a single molecule crystal structure and did not undergo geometry optimization.


Table S4. Density functional theory computed NMR parameters¹ on geometry-optimized structures.

		6 .	5 00	5 00	614	Co	
0 1 -	¹⁷ O site	σiso	σ33	σ22	σ11		η
Sample		(ppm)	(ppm)	(ppm)	(ppm)	(MHz)	•
	CO	-93.091	269.163	-206.649	-341.787	8.68533	0.13762
Fmoc-L-tyrosine	COH	108.232	241.788	136.433	-53.524	-8.64595	0.57711
•							
Fmoc-L-proline	CO	-88.920	262.934	-214.866	-314.829	8.77591	0.14672
	COH	104.576	240.112	130.684	-57.068	-8.57213	0.56200
Fmoc-L-threonine	CO	-82.932	253.228	-228.309	-273.716	8.44669	0.10659
	COH	91.851	213.172	136.461	-74.080	-8.50001	0.55040
Fmoc-L-tryptophan	CO	-93.386	253.942	-213.848	-320.252	8.79774	0.14495
	COH	101.394	238.317	136.519	-70.654	-8.66472	0.56482
Fmoc-L-isoleucine	CO	-77.928	266.204	-212.547	-287.441	8.55007	0.12112
	COH	93.889	227.876	121.964	-68.172	-8.54004	0.53998


¹ NMR parameters were calculated using zero-order regular approximation; triple-zeta polarized basis set (ZORA/TZ2P) after geometry optimization on each structure was implemented using the ZORA, double-zeta polarized basis set (ZORA/DZP).


Figure S1. Mass spectrum of Fmoc-L-isoleucine after precipitation in acetonitrile and water. The expected MW for Fmoc-L-isoleucine is 353.41 Da and the [M+H]⁺ series shown in the spectrum have an additional +23 Da due to the presence of Na⁺. The α-COOH can have a mixture of contributions from $^{16}O/^{16}O$ at 376.3 m/z, $^{16}O/^{17}O$ or $^{17}O/^{16}O$ at 377.3 m/z, $^{17}O/^{17}O$ or $^{16}O/^{18}O$ or $^{18}O/^{16}O$ at 378.2 m/z, $^{18}O/^{17}O$ or $^{17}O/^{18}O$ at 379.2 and $^{18}O/^{18}O$ at 380.1 m/z

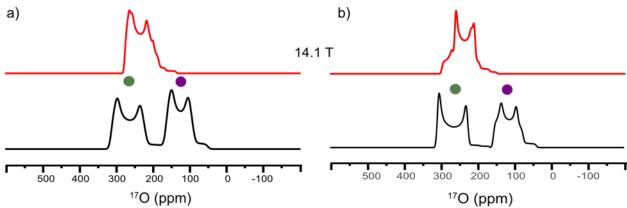

Figure S2. Experimental (black) and computed (blue) MAS NMR spectra of lyophilized (a) and recrystallized Fmoc-L-threonine (b) acquired at 21.1 T. The CO (green circle) and COH (purple circle) 17 O NMR parameters are as follows: δ_{iso} = 343 and 174 ppm, C_Q = 8.5 and 7.4 MHz and η = 0.50 and 0.40, respectively, for the lyophilized sample (a) and δ_{iso} = 311 and 192 ppm, C_Q = 8.1 and 7.2 MHz and η = 0.05 and 0.08, respectively, for the recrystallized sample (b). The orange diamond in (b) indicates 17 O signal from the ZrO₂ from the NMR rotor and the coloured asterisks indicate spinning sidebands.

Figure S3. Simulation of non-spinning NMR spectra at 17.6 T for Fmoc-L-leucine (a) and Fmoc-L-valine (b) from Keeler *et al.* (2017) using spans (Ω) for the CO site of 530 and 540 ppm, respectively. All other NMR parameters are identical to what are reported in Table 1.

Figure S4. Correlation of the intramolecular hydrogen bond distance between the NH and C=O group from X-ray structures with the experimental CSA tensor components for the carbonyl oxygen site. X-ray structure of Fmoc-L serine (CIF-4514078), -tyrosine (CIF-7220755), -isoleucine (CIF-2219071) and -leucine (CIF-2218405) were used to measure the distance between the C=O and H-N groups in each molecule. The linear correlations are as follows : δ_{11} (y = 56.5x + 376.6, R² = 0.99), δ_{22} (y = -45.0x + 543.2, R² = 0.71), δ_{iso} (y = 7.3x + 311.4, R² = 0.93) and δ_{33} (y = 10.4x + 14.5, R² = 0.24).

Figure S5. Simulated MAS NMR spectra of deprotonated (red) and protonated (black) Fmoc-L-tyrosine (a) and Fmoc-L-isoleucine (b) at 14.1 T. Deprotonated spectra were simulated using new computed NMR parameters for δ_{iso} and C_Q after a proton was removed from the original geometry-optimized structures. The asymmetry values (η) were held constant between both species and the δ_{iso} and C_Q for the CO (green circle) and COH (purple circle) sites in the protonated FMOC-amino acids are reported in Table 1.