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Characterization

Fourier transform infrared (FTIR) spectra (Bruker VERTEX70 FTIR, Karlsruhe, 

Germany) were recorded between 400 and 4000 cm-1 with a resolution of 4 cm-1 using 

a KBr pellet technique. The surface microstructures of samples were observed using a 

Regulus 8220 scanning electron microscope (SEM) (Hitachi High-Technologies 

Corporation). The transmission electron microscopy (TEM) was carried out on a 

JEM-2100 Plus microscope (JEOL, Japan) at an accelerating voltage of 200 kV. 

Surface analyses of LS-CTS-TA before and after Hg2+ adsorption were obtained by 

using X-Ray Photoelectron Spectroscopy (XPS) (Al Kα X-rays, ESCALAB250Xi, 

Thermo Fisher Scientific, USA). Peak positions were internally referenced to the C1s 

peak at 284.6 eV. Nitrogen adsorption/desorption isotherms were measured with a 

Micromeritics ASAP 2460 adsorptometer (Maike, Georgia, USA) using nitrogen as 
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the adsorbate at 77 K. All samples were degassed at 150 °C for more than 10 h before 

analysis. 
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Figure S1 UV-Vis absorption of LS, CTS, TA and LS-CTS-TA before and after self-

assembling.
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Figure S2 (a) N1s XPS spectra of LS-CTS-TA before and after adsorption of Hg ion. 

(b) Possible adsorption and desorption mechanism of Hg2+ over LS-CTS-TA. 1.

The catechol−metal coordination bonds possess reversible cleavage and formation 

capabilities at different pH (See the following Figure S2b), which has been 

demonstrated [1]. 
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Figure S3 O1s XPS analysis of LS-CTS-TA before and after adsorption of Hg ion
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Figure S4 Adsorption capacity of LS-CTS-TA at different dosage (initial mercury 
concentration: 300mg/L, volume: 300mL, temperature: 25oC, adsorption time: 2h, 
pH=7); (b) Adsorption capacity of LS-CTS-TA at different temperatures (initial 
mercury concentration: 300mg/L, volume: 300mL, adsorption time: 2h, pH=7).
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Figure S5 Adsorption capacity of LS-CTS-TA at different pHs (initial mercury 

concentration: 300mg/L, volume: 300mL, LS-CTS-TA: 0.3g, temperature: 25oC, 

adsorption time: 2h). 
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Figure S6 Adsorption isotherms of Hg ion on the LS-CTS-TA at different 
temperatures.

Thermodynamic parameters of Gibbs free energy (∆Go, kJ/mol), enthalpy (∆Ho, 

kJ/mol) and entropy (∆So, kJ/mol/K) can be used to analyze the thermodynamics 

based on the following equations:

 Eq. s1∆𝐺𝑜= ∆𝐻𝑜 ‒ 𝑇∆𝑆𝑜



  Eq. s2
𝑙𝑛𝐾𝑑=

∆𝑆𝑜

𝑅
‒
∆𝐻𝑜

𝑅𝑇

Where, R is 8.314 J/(mol · K). Kd represented thermodynamic constant, the value of 
which was equal to that of the Langmuir equilibrium constant (ref: J. Chem. Eng. 
Data 2009, 54, 1981).
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Figure S7 Adsorption performance of LS-CTS-TA under the interference of NaCl 

(50mg/L) or Ca(NO3)2 (50mg/L).

Table S1 Evaluated values of pseudo-first-order and pseudo-second-order rate 

constants and correlation coefficient for the adsorption of Hg2+ on LS-CTS-TA.

pseudo-first-order pseudo-second-order
Intraparticle diffusion 

model
Sample

k1

(min-1)

qe

(mg/g)
R2

k2

(kg/mol·min)

qe

(mg/g)
R2 k3 C R2

LS-CTS-TA 0.0316 77.46 0.9851 3.951×10-4 90.68 0.9984 5.489 8.381 0.8962

Table S2 Langmuir and Freundlich isotherm constants of Hg2+ adsorption on LS-

CTS-TA.



Material Langmuir constants Freundlich constants

KL(L/mg) qm(mg/g) R2 1/n KF R2

LS-CTS-TA 0.00793 95.24 0.9935 0.46953 31.824 0.9447



Table S3 Hg2+ adsorption performances of different materials

Materials pH
Temperature

(oC)

Adsorption 

isotherm model

Qm 

(mg/g)
References

Aulfur-modified pine-

needle biochar 6.7
20

Freundlich 48.2 2

Carboxymethyl cellulose 

thiol-imprinted polymers
5.0 25 Langmuir 81.03 3

Cationic exchange resin 

of carboxyl banana stem
6.0 30 Langmuir 90.88 4a

Activated carbon made 

from sago waste
5.0 30 Langmuir 55.6 4b

Multi-functionalized 

corncob-derived biochar
6.0 25 Langmuir 14.1 4c

Dumbbell and flower 

shaped potato starch 

phosphate polymer

6.5 25 Langmuir 51.38 4d

Biomass of chlorella 

vulgaris
5.0 20 Lamgmuir 32.6 4e

Lignocellulosic materials 5.0
25

Lamgmuir 20 4f

Exhausted coffee waste 7 33 Langmuir 31.75 4g

Guanyl-modified 

cellulose
6 25 Langmuir 48 4h

 

Table S4 Thermodynamic parameters for Hg(II) adsorption over LS-CTS-TA

∆Go (kJ/mol)
∆Ho (kJ/mol) ∆So (J/mol/K)

298 K 308 K 318 K

-1.32 -31.4 -8.04 -8.35 -8.66
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