Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

A biomass-assembled macro/meso-porous nano-scavenger for Hg ion trapping

Nan Nan Xia¹, Bingbing Zhang², Zi Hao Hu¹, Fangong Kong¹, Guomin Xu^{2*}, Fei He^{3*}

¹State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

²National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang, 550014, China

³School of Material Science and Engineering, University of Jinan, Jinan 250022, China

*Correspondence: pec.gmxu@gzu.edu.cn (G.X.); fei.he@seu.edu.cn (F.H.).

Characterization

Fourier transform infrared (FTIR) spectra (Bruker VERTEX70 FTIR, Karlsruhe, Germany) were recorded between 400 and 4000 cm⁻¹ with a resolution of 4 cm⁻¹ using a KBr pellet technique. The surface microstructures of samples were observed using a Regulus 8220 scanning electron microscope (SEM) (Hitachi High-Technologies Corporation). The transmission electron microscopy (TEM) was carried out on a JEM-2100 Plus microscope (JEOL, Japan) at an accelerating voltage of 200 kV. Surface analyses of LS-CTS-TA before and after Hg²⁺ adsorption were obtained by using X-Ray Photoelectron Spectroscopy (XPS) (Al K α X-rays, ESCALAB250Xi, Thermo Fisher Scientific, USA). Peak positions were internally referenced to the C1s peak at 284.6 eV. Nitrogen adsorption/desorption isotherms were measured with a Micromeritics ASAP 2460 adsorptometer (Maike, Georgia, USA) using nitrogen as

the adsorbate at 77 K. All samples were degassed at 150 °C for more than 10 h before analysis.

Figure S1 UV-Vis absorption of LS, CTS, TA and LS-CTS-TA before and after self-assembling.

Figure S3 O1s XPS analysis of LS-CTS-TA before and after adsorption of Hg ion

Figure S4 Adsorption capacity of LS-CTS-TA at different dosage (initial mercury concentration: 300mg/L, volume: 300mL, temperature: 25°C, adsorption time: 2h, pH=7); (b) Adsorption capacity of LS-CTS-TA at different temperatures (initial mercury concentration: 300mg/L, volume: 300mL, adsorption time: 2h, pH=7).

Figure S5 Adsorption capacity of LS-CTS-TA at different pHs (initial mercury concentration: 300mg/L, volume: 300mL, LS-CTS-TA: 0.3g, temperature: 25°C, adsorption time: 2h).

Figure S6 Adsorption isotherms of Hg ion on the LS-CTS-TA at different temperatures.

Thermodynamic parameters of Gibbs free energy (ΔG° , kJ/mol), enthalpy (ΔH° , kJ/mol) and entropy (ΔS° , kJ/mol/K) can be used to analyze the thermodynamics based on the following equations:

$$\Delta G^o = \Delta H^o - T \Delta S^o \qquad \text{Eq. s1}$$

$$lnK_d = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT}$$
 Eq. s2

Where, R is 8.314 J/(mol \cdot K). K_d represented thermodynamic constant, the value of which was equal to that of the Langmuir equilibrium constant (ref: J. Chem. Eng. Data 2009, 54, 1981).

Figure S7 Adsorption performance of LS-CTS-TA under the interference of NaCl (50mg/L) or Ca(NO₃)₂ (50mg/L).

Table S1 Evaluated values of pseudo-first-order and pseudo-second-order rateconstants and correlation coefficient for the adsorption of Hg^{2+} on LS-CTS-TA.

Sample	pseudo-first-order			manuda anonad andan			Intraparticle diffusion		
				pseudo-se	model				
	\mathbf{k}_1	q _e	R ²	\mathbf{k}_2	q _e	R ²	k ₃	С	R ²
	(min ⁻¹)	(mg/g)		(kg/mol·min)	(mg/g)				
LS-CTS-TA	0.0316	77.46	0.9851	3.951×10 ⁻⁴	90.68	0.9984	5.489	8.381	0.8962

Table S2 Langmuir and Freundlich isotherm constants of Hg2+ adsorption on LS-CTS-TA.

Material	Lang	gmuir consta	nts	Freundlich constants			
	K _L (L/mg)	q _m (mg/g)	R ²	1/n	$K_{\rm F}$	\mathbb{R}^2	
LS-CTS-TA	0.00793	95.24	0.9935	0.46953	31.824	0.9447	

Motoriala	"II	Temperature	emperature Adsorption		Dafaranass	
Waterials	рп	(°C)	isotherm model	(mg/g)	References	
Aulfur-modified pine-		20				
needle biochar	6.7	20	Freundlich	48.2	2	
Carboxymethyl cellulose	5.0	25	T	01.02	2	
thiol-imprinted polymers	5.0	23	Langmuir	81.05	3	
Cationic exchange resin	()	20	т ·	00.00	4	
of carboxyl banana stem	6.0	30	Langmuir	90.88	4a	
Activated carbon made	5.0	20	T	55 (41.	
from sago waste	5.0	30	Langmuir	55.0	40	
Multi-functionalized	()	25	T	141	4 -	
corncob-derived biochar	0.0	25	Langmuir	14.1	40	
Dumbbell and flower						
shaped potato starch	6.5	25	Langmuir	51.38	4d	
phosphate polymer						
Biomass of chlorella	5.0	20	T	22.6	4 -	
vulgaris	5.0	20	Lamgmuir	32.0	4e	
T :	5.0		T	20	46	
Lignocellulosic materials	5.0	25	Lamgmuir	20	41	
Exhausted coffee waste	7	33	Langmuir	31.75	4g	
Guanyl-modified	(25	т ·	40	41	
cellulose	0	25	Langmuir	48	4n	

Table S3 Hg²⁺ adsorption performances of different materials

Table S4 Thermodynamic parameters for Hg(II) adsorption over LS-CTS-TA

	$\Delta S^{\circ} (J/mol/K)$ –		ΔG^{o} (kJ/mol)	
ΔH° (KJ/mol)		298 K	308 K	318 K
-1.32	-31.4	-8.04	-8.35	-8.66

Supporting references

1. Andersen A,; Krogsgaard M,; Birkedal H., Mussel-inspired self-healing doublecross-linked hydrogels by controlled combination of metal coordination and covalent cross-linking. *Biomacromolecules* **2017**, 19(5): 1402. 2. Jeon, C.; Solis, K. L.; An, H.-R.; Hong, Y.; Igalavithana, A. D.; Ok, Y. S., Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar. *Journal of Hazardous Materials* **2020**, *388*, 122048.

3. Tarisai Velempini, K. P., Xavier Y. Mbianda, Omotayo A. Arotiba, Carboxymethyl cellulose thiol-imprinted polymers: Synthesis, characterization and selective Hg(II) adsorption. *Journal of Environmental Sciences* **2019**, *79*, 16.

4. (a) Anirudhan, T.; Senan, P.; Unnithan, M., Sorptive potential of a cationic exchange resin of carboxyl banana stem for mercury(II) from aqueous solutions. Separation and Purification Technology 2007, 52 (3), 512-519; (b) Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Vennilamani, N.; Pattabhi, S., Mercury (II) adsorption by activated carbon made from sago waste. Carbon 2004, 42 (4), 745-752; (c) Faheem, F.; Bao, J.; Zheng, H.; Tufail, H.; Irshad, S.; Du, J., Adsorption-assisted decontamination of Hg(ii) from aqueous solution by multi-functionalized corncobderived biochar. RSC Advances 2018, 8 (67), 38425-38435; (d) Bashir, A.; Manzoor, T.; Malik, L. A.; Qureashi, A.; Pandith, A. H., Enhanced and selective adsorption of Zn(II), Pb(II), Cd(II), and Hg(II) Ions by a dumbbell- and flower-shaped potato starch phosphate polymer: A combined experimental and DFT calculation study. ACS omega 2020, 5 (10), 4853-4867; (e) Solisio, C.; Al Arni, S.; Converti, A., Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study. Environmental technology 2019, 40 (5), 664-672; (f) Arias Arias, F. E.; Beneduci, A.; Chidichimo, F.; Furia, E.; Straface, S., Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere 2017, 180, 11-23; (g) Mora Alvarez, N. M.; Pastrana, J. M.; Lagos, Y.; Lozada, J. J., Evaluation of mercury (Hg²⁺) adsorption capacity using exhausted coffee waste. Sustainable Chemistry and Pharmacy 2018, 10, 60-70; (h) Kenawy, I. M.; Hafez, M. A. H.; Ismail, M. A.; Hashem, M. A., Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanylmodified cellulose. International journal of biological macromolecules 2018, 107 (Pt B), 1538-1549.