Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Content

1 General information	.1
2 General procedure for the preparation of 3	3
3 The experimental results	3
Table 1. Optimization of Reaction Conditions.	3
Table 2. Substrate Scope for Spiro-Cyclopropanation.	4
4 Structural characterization	6
5 Original spectrogram1	19
6 X-ray crystallographic data of 3ag	74

1 General information

All reactions were carried out under an Ar atmosphere in oven-dried glassware with magnetic stirring, unless otherwise specified. Dichloromethane was purified by passage through a bed of activated alumina. All other reagents and solvents were purchased from Energy Chemical or J&K Chemical Company and used without any further purification. Powdered 4 Å molecular sieves (MS 4Å) were dried at 400°C under a vacuum prior to use. TLC information was recorded on GF 254 plates (Qingdao Haiyang Chemical Co. Ltd., P. R. China) and developed by staining with KMnO₄ or ceric ammonium molybdate (CAM). Purification of reaction products were carried out by flash chromatography with silica gel (200-300 mesh, Qingdao Haiyang Chemical Co. Ltd., P. R. China). Melting points were measured with X-4 digital display micromelting point detector. ¹H NMR spectra were measured on Varian 400 (400 MHz) spectrometers and reported in ppm (s = singlet, d = doublet, t = triplet, q = quartet, m =

multiplet, br =broad; integration; coupling constant(s) in Hz), using TMS as an internal standard (TMS at 0.00 ppm) in CDCl₃. ¹³C NMR spectra were recorded on V400 spectrometer and reported in ppm using solvent as an internal standard (CDCl₃ at 77.16 ppm). High-resolution mass spectra were obtained using an Agilent 6230 TOF LC/MS with an (atmospheric pressure photo-ionization (APPI) or electrospray (ESI) source with purine and HP-0921 as an internal calibrants. HR-EI-MS were performed on an API-Qstar-Pulsar-1 spectrometer. HPLC was Agilent Technologies 1260 infinity II. IR spectra were obtained using a Perkin Elmer FT-IR spectrometer (Spectrum Two) with KBr pellets.

a) Preparation of 2-arylideneindane-1,3-dione 1¹

A 50 mL Schlenk flask, equipped with a magnetic stirring bar, was sequentially charged with a solution of 1,3-indanedione (1.5 g, 10 mmol), L-proline (349.0 mg, 0.3 equiv) and benzaldehyde (2.0 g, 1.1 equiv) in methanol (20 mL). The reaction mixture was stirred for 12 hours at room temperature. Then the resulting mixture was purified using vacuum-filtration and eluted by flash chromatography (petroleum ether/EtOAc = 5:1) furnished **1** as yellow solid.

b) Preparation of Dimethyl(2-oxo-2-phenylethyl)sulfonium bromide 2

Dimethyl sulfide (0.34 mL, 4.6 mmol) was added to a rapidly stirred solution of the bromoacetophenone (0.92 g, 4.6 mmol) in acetone (3 mL) at rt and the mixture was stirred for 24 hours at room temperature. After reaction, filtration, the filter cake was washed several times with acetone, and then dried under vacuum for 4 hours at 40°C. The resulting colorless solid was the product **2**.

c) Preparation of 2-benzylidenebenzofuran-3(2H)-one 10²

To a solution of benzofuran-3(2H)-one (1.0 mmol) and benzaldehyde (1.0 mmol) in dichloromethane (6 mL) was added aluminum oxide (30.0 mmol) at room temperature. After stirring for 6 h, the reaction mixture was filtered off. The filtrate was concentrated under vacuum and the residue was purified by flash chromatography on silica gel to give the desired compound **10**.

2 General procedure for the preparation of 3

Under Ar atmosphere, to a solution of 2-arylideneindane-1,3-dione 1 (0.22 mmol) and dimethyl(2-oxo-2-phenylethyl)sulfonium bromide 2 (0.26 mmol) in HFIP (2.0 mL) was added Et₃N (0.03 mL, 0.26 mmol). The resulting mixture was stirred at rt for a specified time. The reaction was monitored by TLC spectroscopy. After the reaction was completed, the solvent was then removed on a rotary evaporator at reduced pressure and the residue was subjected to column chromatographic isolation on silica gel (eluted with petroleum ether/EtOAc 20:1-5:1) to give the annulation product **3**.

3 The experimental results

Table 1. Optimization of Reaction Conditions. a

2	Cs_2CO_3	HFIP	20:4	72
3	Cs_2CO_3	DCM	20:6	52
4	Cs_2CO_3	DCE	20:6	48
5	Cs_2CO_3	EtOAc	20:3	52
6	Cs ₂ CO ₃	MeOH	>20 :1	63
7	Cs_2CO_3	THF	20:2	60
8	Cs_2CO_3	EtOH	>20:1	54
9	Cs_2CO_3	1,4-Dioxane	20:4	59
10	Cs_2CO_3	TFE	>20:1	24
11	Cs ₂ CO ₃	CHCl ₃	20:5	63
12	Na ₂ CO ₃	HFIP	20:6	37
13	K_2CO_3	HFIP	20:8	17
14	Et ₃ N	HFIP	>20:1	81 ^d
15	NaHCO ₃	HFIP	20:6	24
16	NaOH	HFIP	>20:1	63
17	NaOAc	HFIP	20:11	50
18	Pyridine	HFIP	20:4	32
19	Piperidine	HFIP	>20:1	46
20	DMAP	HFIP	20:2	50
21	DBU	HFIP	>20:1	38
22	Et ₃ N	MeCN	20:4	60
23	Et ₃ N	DCM	>20:1	51
24	Et ₃ N	DCE	20:8	43
25	Et ₃ N	EtOAc	>20:1	54
26	Et ₃ N	MeOH	>20:1	45
27	Et ₃ N	THF	>20:1	54
28	Et ₃ N	EtOH	>20:1	45
29	Et ₃ N	1,4-Dioxane	>20:1	70
30	Et ₃ N	TFE	4:20	24
31	Et ₃ N	CHCl ₃	>20:1	42

^a Reaction conditions: **1a** (0.22 mmol) with **2a** (0.26 mmol) and base (0.26 mmol) in 2 mL solvent. ^b Diastereomeric ratio (d.r.) was determined by ¹H NMR analysis. ^c NMR yield; they were determined by ¹H spectra using 1,3,5-trimethoxybenzene as an internal standard. ^d Yield of isolated product.

Table 2. Substrate Scope for Spiro-Cyclopropanation. ^a

1	Ph	Ph	3 aa	>20:1	81
2	o-MePh	Ph	3ab	>20:1	79
3	<i>m</i> -MePh	Ph	3ac	>20:1	43
4	<i>p</i> -MePh	Ph	3ad	>20:1	59
5	o-MeOPh	Ph	3ae	>20:1	79
6	<i>m</i> -MeOPh	Ph	3af	>20:1	97
7	<i>p</i> -MeOPh	Ph	3ag	>20:1	59
8	2,5-MeOPh	Ph	3ah	>20:1	96
9	<i>p-t</i> BuPh	Ph	3ai	>20:1	85
10	<i>p</i> -MeSPh	Ph	3aj	>20:1	59
11	o-ClPh	Ph	3ak	>20:1	94
12	<i>m</i> -ClPh	Ph	3al	>20:1	73
13	<i>p</i> -ClPh	Ph	3am	>20:1	61
14	2,4-ClPh	Ph	3an	>20:1	70
15	<i>m</i> -NO ₂ Ph	Ph	3 ao	>20:1	60
16	<i>p</i> -NO ₂ Ph	Ph	Зар	>20:1	83
17	2-Furyl	Ph	3aq	>20:1	44
18	2-Thienyl	Ph	3ar	20:7	34
19	3-Pyridinyl	Ph	3as	20:4	76
20	1-Naphthyl	Ph	3at	20:4	42
21	3-Phenylpropynyl	Ph	3au	>20:1	71
22	3-Phenylpropenal	Ph	3av	>20:1	60
23	Cyclohexyl	Ph	3aw	20:3	88
24	Ph	<i>p</i> -MePh	3ba	20:2	94
25	Ph	<i>p</i> -MeOPh	3ca	>20:1	36
26	Ph	<i>m</i> -ClPh	3da	20:2	58
27	Ph	<i>p</i> -BrPh	3ea	>20:1	89
28	Ph	o-NO ₂ Ph	3fa	>20:1	31
29	Ph	<i>m</i> -NO ₂ Ph	3ga	>20:1	71
30	Ph	<i>p</i> -CNPh	3ha	>20:1	97
31	Ph	2-Thienyl	3ia	20:7	66
32	Ph	2-Naphthyl	3ja	20:2	95
33	Ph	Me	3ka	>20:1	67
34	Ph	Et	3la	>20:1	95
35	Ph	OEt	3ma	20:9	45
36	C O Ph	Ph O O Ph	3na	20:18	31

^a Reaction conditions: **1** (0.22 mmol) with **2** (0.26 mmol) and Et₃N (0.26 mmol) in 2 mL HFIP. ^b Diastereomeric ratio (dr) was determined with the help of NMR. ^c Isolated yield after column chromatography purification.

4 Structural characterization

(2S,3R)-2-benzoyl-3-phenylspiro[cyclopropane-1,2'-indene]-1',3'-dione (3aa)

White solid, 81%, m.p. = 122-124°C, d.r.= >20:1; IR (KBr) v_{max} = 3061, 1707, 1676, 1596, 1286, 1212, 749, 731, 694 cm⁻¹. ¹H NMR (400 MHz,

CDCl₃) δ 7.96-7.94 (m, 2H), 7.91-7.87 (m, 2H), 7.80-7.76 (m, 2H), 7.56-7.53 (m, 1H), 7.42-7.31 (m, 7H), 4.30 (d, 1H, *J*= 9.5 Hz), 4.23 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.43, 194.19, 190.60, 142.03, 141.95, 136.09, 135.28, 135.18, 133.82, 132.31, 129.22, 128.89, 128.46, 128.40, 128.22, 123.08, 122.89, 47.38, 42.43, 40.73. HR-EI-MS (positive) *m/z* 375.0994 [M+Na]⁺ (calcd for C₂₄H₁₆O₃Na 375.0997).

(2S,3R)-2-benzoyl-3-(o-tolyl)spiro[cyclopropane-1,2'-indene]-1',3'dione (**3ab**)

White solid, 79%, m.p. = 106-107°C, d.r.= >20:1; IR (KBr) ν_{max} = 3056, 2924, 1707, 1692, 1594, 1273, 1219, 742 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.92 (m, 2H), 7.90-7.87 (m, 2H), 7.81-7.78 (m, 2H), 7.55-

7.51 (m, 1H), 7.42-7.37 (m, 3H), 7.25-7.24 (m, 2H), 7.13-7.11 (m, 1H), 4.28 (d, 1H, J= 9.5 Hz), 4.16 (d, 1H, J= 9.5 Hz), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.62, 193.89, 190.81, 141.84, 141.55, 138.03, 136.22, 135.36, 135.30, 133.82, 131.26, 130.10, 128.91, 128.73, 128.45, 128.37, 125.91, 123.09, 122.88, 46.73, 40.95, 40.71, 19.64. HR-EI-MS (positive) m/z 389.1159 [M+Na]⁺ (calcd for C₂₄H₁₆O₃Na 389.1154).

(2S,3R)-2-benzoyl-3-(m-tolyl)spiro[cyclopropane-1,2'-indene]-1',3'dione (**3ac**)

White solid, 43%, m.p. = 125-127°C, d.r.= >20:1; IR (KBr) v_{max} = 3018, 2919, 1706, 1677, 1594, 1285, 1223, 761, 741, 691 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.94 (m, 2H), 7.90-7.87 (m, 2H), 7.80-

7.76 (m, 2H), 7.55-7.52 (m, 1H), 7.42-7.38 (m, 2H), 7.25-7.21 (m, 1H), 7.17-7.11 (m, 3H), 4.28 (d, 1H, J= 9.5 Hz), 4.20 (d, 1H, J= 9.5 Hz), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.60, 194.33, 190.80, 142.17, 142.11, 138.17, 136.26, 135.33, 135.24, 133.88, 132.32, 130.12, 129.15, 128.99, 128.58, 128.35, 126.30, 123.17, 122.99, 47.55, 42.69, 40.91, 21.51. HR-EI-MS (positive) m/z 389.1157 [M+Na]⁺ (calcd for C₂₄H₁₆O₃Na 389.1154).

White solid, 59%, m.p. = 109-110°C, d.r.= >20:1; IR (KBr) v_{max} = 3029, 2923, 2856, 1704, 1594, 1282, 1225, 1085, 816, 731 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 9.96-7.94 (m, 2H), 7.90-7.87 (m, 2H), 7.79-7.75 (m, 2H), 7.55-7.52 (m, 1H), 7.42-7.38 (m, 2H), 7.25 (d, 2H, *J*= 8.2 Hz), 7.15 (d, 2H, *J*= 8.2 Hz), 4.28 (d, 1H, *J*= 9.5 Hz), 4.20 (d, 1H, *J*= 9.5 Hz), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.61, 194.40, 190.81, 142.18, 142.08, 138.14, 136.26, 135.31, 135.20, 133.87, 129.32, 129.24, 129.18, 128.98, 128.58, 123.14, 122.95, 47.65, 42.71, 40.94, 21.38. HR-EI-MS (positive) *m/z* 389.1157 [M+Na]⁺ (calcd for C₂₄H₁₆O₃Na 389.1154).

(2S,3R)-2-benzoyl-3-(2-methoxyphenyl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3ae**)

White solid, 79%, m.p. = 118-119°C, d.r.=>20:1; IR (KBr) ν_{max} = 3003, 2939, 2837, 1705, 1683, 1279, 1252, 754, 744 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.95 (m, 2H), 7.91-7.86 (m, 2H), 7.79-7.77 (m, 2H),

7.54-7.50 (m, 1H), 7.41-7.37 (m, 3H), 7.32-7.27 (m, 1H), 7.02-6.96 (m, 1H), 6.76-6.74 (m, 1H), 4.11 (d, 1H, J= 9.5 Hz), 4.03 (d, 1H, J= 9.5 Hz), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.19, 194.02, 191.33, 158.10, 142.07, 142.04, 136.41, 134.92, 134.88, 133.72, 130.04, 129.59, 128.89, 128.50, 122.98, 122.44, 121.99, 120.53, 110.08, 54.96, 46.44, 40.82, 37.81. HR-EI-MS (positive) m/z 405.1107 [M+Na]⁺ (calcd for C₂₅H₁₈O₄Na 405.1103).

(2S,3R)-2-benzoyl-3-(3-methoxyphenyl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3af**)

White solid, 97%, m.p. = 99-101°C, d.r.= >20:1; IR (KBr) v_{max} = 3059, 2943, 2840, 1705, 1680, 1592, 1254, 1224, 1036, 764, 732,

689 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.93 (m, 2H), 7.90-7.88 (m, 2H), 7.79-7.77 (m, 2H), 7.55-7.51 (m, 1H), 7.42-7.38 (m, 2H), 7.27-7.23 (m, 1H), 6.94-6.83 (m, 3H), 4.27 (d, 1H, J= 9.5 Hz), 4.20 (d, 1H, J= 9.5 Hz), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.48, 194.16, 190.64, 159.63, 142.11, 136.23, 135.34, 135.27, 133.99, 133.87, 129.46, 128.55, 123.15, 122.98, 121.61, 115.09, 113.76, 55.36, 47.49, 42.52, 41.01. HR-EI-MS (positive) m/z 405.1107 [M+Na]⁺ (calcd for C₂₅H₁₈O₄Na 405.1103).

(2S,3R)-2-benzoyl-3-(4-methoxyphenyl)spiro[cyclopropane-1,2'-

indene]-1',3'-dione (**3ag**)

White solid, 59%, m.p. = 103-105°C, d.r.=>20:1; IR (KBr) ν_{max} = 3065, 2959, 2923, 1704, 1518, 1449, 1260, 1086, 1030, 804, 735 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.94 (m, 2H), 7.89-7.86 (m, 2H), 7.79-

7.74 (m, 2H), 7.55-7.51 (m, 1H), 7.42-7.38 (m, 2H), 7.31-7.29 (m, 2H), 6.88-6.85 (m, 2H), 4.27 (d, 1H, J= 9.5 Hz), 4.16 (d, 1H, J= 9.5 Hz), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.59, 194.42, 190.82, 159.58, 142.21, 142.07, 136.26, 135.29, 135.19, 133.89, 130.46, 128.99, 128.58, 124.28, 123.13, 122.92, 113.92, 55.38, 47.85, 42.74, 41.06. HR-EI-MS (positive) m/z 405.1107 [M+Na]⁺ (calcd for C₂₅H₁₈O₄Na 405.1103).

(2S,3R)-2-benzoyl-3-(2,5-dimethoxyphenyl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3ah**)

White solid, 96%, m.p. = 34-36°C, d.r.= >20:1; IR (KBr) ν_{max} = 3094, 2939, 2836, 1704, 1672, 1497, 1279, 1051, 801, 724 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.91-7.87 (m, 2H), 7.80-7.76 (m, 2H), 7.54-7.51 (m, 1H), 7.42-7.38 (m, 2H), 6.95-6.84 (m, 1H), 6.83-

6.80 (m, 1H), 6.68-6.65 (m, 1H), 4.07 (d, 1H, *J*= 9.5 Hz), 4.00 (d, 1H, *J*= 9.5 Hz), 3.79 (s, 3H), 3.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.15, 194.00, 191.31, 153.53, 152.33, 142.20, 142.06, 136.42, 134.96, 134.89, 133.77, 128.94, 128.55, 123.06, 123.00, 122.48, 116.43, 114.02, 110.93, 55.94, 55.38, 46.46, 40.96, 37.67. HR-EI-MS (positive) *m/z* 435.1207 [M+Na]⁺ (calcd for C₂₆H₂₀O₅Na 435.1208).

(2S,3R)-2-benzoyl-3-(4-isopropylphenyl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3ai**)

White solid, 85%, m.p. = 98-100°C, d.r.= >20:1; IR (KBr) v_{max} = 3059, 2921, 2850, 1705, 1594, 1448, 1278, 1222, 1089, 743, 726 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.94 (m, 2H), 7.90-7.88 (m, 2H), 7.79-7.75 (m, 2H), 7.55-7.51 (m, 1H), 7.42-7.30 (m, 6H), 4.28 (d, 1H, *J*= 9.5

Hz), 4.16 (d, 1H, *J*= 9.5 Hz), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 194.61, 194.37, 190.80, 151.27, 142.17, 136.33, 135.28, 135.18, 133.84, 129.42, 128.98, 128.60, 125.47, 123.15, 122.96, 47.82, 42.90, 41.21, 34.75. HR-EI-MS (positive) *m/z* 431.1622 [M+Na]⁺ (calcd for C₂₈H₂₄O₃Na 431.1623).

(2S,3R)-2-benzoyl-3-(4-(methylthio)phenyl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3aj**)

White solid, 59%, m.p. = 124-126°C, d.r.=>20:1; IR (KBr) ν_{max} = 3048, 2987, 2924, 2852, 1704, 1678, 1594, 1282, 1228, 1084, 817, 752, 736 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.90-7.87 (m, 2H), 7.80-7.75 (m, 2H), 7.55-7.51 (m, 1H), 7.42-7.38 (m, 2H), 7.30-

7.26 (m, 2H), 7.21-7.19 (m, 2H), 4.26 (d, 1H, *J*= 9.5 Hz), 4.17 (d, 1H, *J*= 9.5 Hz), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.37, 194.25, 190.61, 142.18, 142.05, 138.93, 136.23, 135.37, 135.27,

133.91, 129.69, 128.99, 128.56, 126.28, 123.17, 122.95, 47.66, 42.40, 40.87, 15.67. HR-EI-MS (positive) m/z 421.0873 [M+Na]⁺ (calcd for C₂₅H₁₈O₃SNa 421.0874).

(2S,3S)-2-benzoyl-3-(2-chlorophenyl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (**3ak**)

White solid, 94%, m.p. = 83-85°C, d.r.= >20:1; IR (KBr) ν_{max} = 3065, 2922, 2850, 1706, 1688, 1449, 1280, 753, 737 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.88 (m, 4H), 7.81-7.76 (m, 2H), 7.55-7.51 (m, 1H), 7.48-

7.46 (m, 1H), 7.41-7.38 (m, 2H), 7.35-7.28 (m, 3H), 4.21-4.16 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.31, 194.01, 190.55, 142.08, 141.75, 136.14, 135.96, 135.37, 135.28, 133.94, 131.51, 130.66, 129.63, 129.33, 128.99, 128.47, 126.87, 123.18, 122.91, 46.33, 40.62, 39.36. HR-EI-MS (positive) *m/z* 409.0606 [M+Na]⁺ (calcd for C₂₄H₁₅O₃ClNa 409.0607).

(2S,3R)-2-benzoyl-3-(3-chlorophenyl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (**3al**)

White solid, 73%, m.p. =103-105°C, d.r.= >20:1; IR (KBr) v_{max} = 3068, 2925, 2856, 1707, 1686, 1595, 1277, 1216, 733, 689 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.88 (m, 4H), 7.81-7.79 (m, 2H), 7.56-

7.52 (m, 1H), 7.42-7.36 (m, 3H), 7.29-7.24 (m, 3H), 4.25 (d, 1H, J= 9.5 Hz), 4.18 (d, 1H, J= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.10, 194.06, 190.26, 142.13, 142.00, 136.08, 135.56, 135.44, 134.54, 134.42, 134.01, 129.70, 129.53, 129.03, 128.53, 127.48, 123.29, 123.11, 47.16, 41.14, 40.63. HR-EI-MS (positive) m/z 409.0606 [M+Na]⁺ (calcd for C₂₄H₁₅O₃ClNa 409.0607).

(2S,3R)-2-benzoyl-3-(4-chlorophenyl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (**3am**)

White solid, 61%, m.p. = 110-111°C, d.r.= >20:1; IR (KBr) v_{max} = 3063, 2923, 2852, 1706, 1596, 1468, 1289, 1220, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.89 (m, 4H), 7.80-7.78 (m, 2H), 7.56-7.52 (m, 1H), 7.42-7.33 (m, 2H), 7.30 (s, 4H), 4.25 (d, 1H, *J*= 9.5 Hz), 4.18 (d, 1H, *J*= 9.5

Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.19, 194.17, 190.35, 142.13, 141.96, 136.09, 135.53, 135.40, 134.23, 134.00, 130.97, 130.64, 129.02, 128.72, 128.52, 123.26, 123.03, 47.31, 41.38, 40.76. HR-EI-MS (positive) *m/z* 409.0606 [M+Na]⁺ (calcd for C₂₄H₁₅O₃ClNa 409.0607).

(2S,3S)-2-benzoyl-3-(2,4-dichlorophenyl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (**3an**) White solid, 70%, m.p. = 120-121°C, d.r.= >20:1; IR (KBr) v_{max} = 3074, 2920, 2848, 1705, 1684, 1291, 1205, 736, 695, 574 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.89 (m, 4H), 7.83-7.78 (m, 2H), 7.55-7.52 (m, 1H), 7.42-7.38 (m, 3H), 7.32-7.29 (m, 2H), 4.15 (d, 1H, *J*= 9.5 Hz), 4.12 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 193.98, 193.94, 190.24, 142.06, 141.65, 136.58, 136.04, 135.55, 135.42, 134.89, 134.05, 131.47, 130.24, 129.31, 129.03, 128.46, 127.27, 123.28, 122.98, 46.18, 40.50, 38.42. HR-EI-MS (positive) *m/z* 443.0216 [M+Na]⁺ (calcd for C₂₄H₁₄O₃Cl₂Na 443.0218).

(2S,3R)-2-benzoyl-3-(3-nitrophenyl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3ao**)

White solid, 60%, m.p. = 119-121°C, d.r.= >20:1; IR (KBr) v_{max} = 3067, 2918, 2850, 1700, 1677, 1530, 1351, 1281, 754, 742, 731 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.25-8.17 (m, 2H), 7.93-7.88 (m,

4H), 7.85-7.80 (m, 2H), 7.71-7.69 (m, 1H), 7.57-7.51 (m, 2H), 7.43-7.39 (m, 2H), 4.31 (d, 1H, J= 9.5 Hz), 4.28 (d, 1H, J= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.05, 193.62, 189.81, 148.28, 142.16, 141.87, 135.95, 135.84, 135.64, 135.45, 134.78, 134.17, 129.47, 129.10, 128.52, 124.39, 123.45, 123.27, 123.18, 46.86, 40.54, 39.97. HR-EI-MS (positive) m/z 420.3758 [M+Na]⁺ (calcd for C₂₄H₁₅O₅NNa 420.3758).

IO₂ (2S,3R)-2-benzoyl-3-(4-nitrophenyl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (3ap)

White solid, 83%, m.p. = 165-167°C, d.r.=>20:1; IR (KBr) ν_{max} = 3028, 2956, 2924, 2853, 1703, 1678, 1518, 1344, 1280, 1077, 792, 729 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.22-8.20 (m, 2H), 7.93-7.89 (m, 4H), 7.85-7.80 (m, 2H), 7.58-7.54 (m, 3H), 7.43-7.39 (m, 2H), 4.29 (d, 1H,

J= 9.5 Hz), 4.27 (d, 1H, J= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 193.97, 193.58, 189.79, 147.73, 142.14, 141.87, 140.08, 135.94, 135.89, 135.69, 134.22, 130.35, 129.13, 128.52, 123.71, 123.48, 123.22, 47.10, 40.68, 40.23. HR-EI-MS (positive) m/z 420.3758 [M+Na]⁺ (calcd for C₂₄H₁₅O₅NNa 420.3758).

(2S,3S)-2-benzoyl-3-(furan-2-yl)spiro[cyclopropane-1,2'-indene]-1',3'dione (**3aq**)

Yellow oil, 44%, d.r.= >20:1; IR (KBr) ν_{max} = 3068, 2926, 1710, 1595, 1448, 1278, 1225, 731, 693 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.89-7.87 (m, 2H), 7.80-7.76 (m, 2H), 7.56-7.52 (m, 1H), 7.42-

7.37 (m, 3H), 6.44-6.38 (m, 2H), 4.22 (d, 1H, J= 9.5 Hz), 4.07 (d, 1H, J= 9.5 Hz); ¹³C NMR (100

MHz, CDCl₃) δ 193.80, 193.49, 189.96, 147.25, 142.98, 142.17, 142.03, 136.07, 135.41, 135.34, 133.98, 129.00, 128.58, 123.22, 123.06, 110.92, 110.04, 46.20, 40.01, 34.35. HR-EI-MS (positive) *m/z* 365.0792 [M+Na]⁺ (calcd for C₂₂H₁₄O₄Na 365.0790).

(2S,3S)-2-benzoyl-3-(thiophen-2-yl)spiro[cyclopropane-1,2'-indene]-1',3'dione (**3ar**)

Yellow solid, 34%, m.p. = 112-114°C, d.r.= 20:7; IR (KBr) ν_{max} = 3064, 2913, 1706, 1678, 1594, 1283, 1221, 1002, 734, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.90 (m, 2H), 7.89-7.87 (m, 2H), 7.80-7.76 (m, 2H),

7.56-7.52 (m, 1H), 7.43-7.39 (m, 2H), 7.27-7.25 (m, 1H), 7.14-7.12 (m, 1H), 7.01-6.99 (m, 1H), 4.27 (d, 1H, J= 9.5 Hz), 4.23 (d, 1H, J= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 193.94, 193.50, 190.06, 142.17, 142.01, 136.07, 135.42, 135.41, 135.35, 133.97, 129.00, 128.58, 128.04, 127.12, 126.11, 123.20, 123.05, 47.61, 42.33, 37.24. HR-EI-MS (positive) m/z 381.0560 [M+Na]⁺ (calcd for C₂₂H₁₄O₃SNa 381.0561).

(2S,3R)-2-benzoyl-3-(pyridin-3-yl)spiro[cyclopropane-1,2'-indene]-1',3'dione (**3as**)

Yellow oil, 76%, d.r.= 20:4; IR (KBr) ν_{max} = 3065, 2907, 2850, 1707, 1541, 1231, 731 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.52-8.50 (m, 1H), 7.89-7.73 (m,7H), 7.52-7.48 (m, 1H), 7.38-7.27 (m, 3H), 4.26 (d, 1H,

J= 9.5 Hz), 4.16 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 193.95, 193.73, 189.95, 150.35, 148.85, 142.05, 141.81, 136.81, 135.95, 135.64, 135.48, 134.00, 128.97, 128.41, 123.26, 123.04, 46.64, 40.08, 38.55. HR-EI-MS (positive) *m/z* 376.0952 [M+Na]⁺ (calcd for C₂₃H₁₅O₃NNa 376.0950).

(2S,3R)-2-benzoyl-3-(naphthalen-1-yl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3at**)

White solid, 42%, m.p. = 62-64°C, d.r.= 20:4; IR (KBr) ν_{max} = 3065, 1707, 1595, 1282, 1221, 776, 737 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.95 (m, 3H), 7.86-7.73 (m, 5H), 7.66-7.64 (m, 1H), 7.59-7.49

(m, 3H), 7.44-7.38 (m, 3H), 7.29-7.24 (m, 1H), 4.62 (d, 1H, J= 9.5 Hz), 4.41 (d, 1H, J= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.98, 193.79, 190.95, 142.08, 141.83, 136.35, 135.37, 135.33, 133.95, 133.69, 132.92, 129.19, 129.07, 129.04, 128.87, 128.60, 126.88, 126.81, 125.99, 125.22, 123.19, 123.00, 47.02, 41.13, 39.83. HR-EI-MS (positive) m/z 425.1153 [M+Na]⁺ (calcd for C₂₈H₁₈O₃Na 425.1154).

(2S,3R)-2-benzoyl-3-(phenylethynyl)spiro[cyclopropane-1,2'-indene]-

1',3'-dione (**3au**)

Yellow oil, 71%, d.r.= >20:1; IR (KBr) v_{max} = 3060, 2919, 2850, 2183, 1695, 1690, 1353, 1219, 967, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.05 (m, 1H), 7.94-7.78 (m, 5H), 7.56-7.52 (m, 1H), 7.49-7.47 (m, 2H), 7.43-7.39 (m, 2H), 7.32-7.29 (m, 3H), 3.98 (d, 1H, *J*= 9.5 Hz), 3.64 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 193.26, 192.62, 189.26, 142.12, 142.11, 135.82, 135.43, 135.40, 133.92, 131.99, 128.90, 128.57, 128.47, 128.30, 123.20, 123.13, 122.42, 84.22, 82.78, 45.42, 42.62, 25.95. HR-EI-MS (positive) *m/z* 399.0996 [M+Na]⁺ (calcd for C₂₆H₁₆O₃Na 399.0997).

(2S,3S)-2-benzoyl-3-((E)-styryl)spiro[cyclopropane-1,2'-indene]-1',3'-dione (**3av**)

Yellow oil, 60%, d.r.=>20:1; IR (KBr) v_{max} = 2956, 2918, 2850, 1719, 1682, 1578, 1468, 977, 734 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.99 (m, 1H), 7.93-7.87 (m, 3H), 7.83-7.76 (m, 2H), 7.55-7.51 (m, 1H), 7.43-7.38(m, 4H), 7.34-7.30 (m, 2H), 7.25-7.23 (m, 2H), 6.81-

6.77 (m, 1H), 6.56-6.49 (m, 1H), 3.92 (d, 1H, *J*= 9.5 Hz), 3.74 (dd, 1H, *J*= 9.5 Hz, *J*= 7.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 195.52, 194.22, 190.38, 142.52, 141.95, 136.43, 136.26, 135.48, 135.46, 135.24, 133.87, 128.97, 128.79, 128.62, 128.17, 126.58, 123.20, 122.96, 122.47, 47.11, 43.26, 42.11. HR-EI-MS (positive) *m/z* 401.1153 [M+Na]⁺ (calcd for C₂₆H₁₈O₃Na 401.1154).

(2S,3S)-2-benzoyl-3-cyclohexylspiro[cyclopropane-1,2'-indene]-1',3'dione (**3aw**)

White solid, 88%, m.p. = 91-93°C, d.r. = 20:3; IR (KBr) v_{max} = 3067, 2924, 2848, 1702, 1672, 1288, 1220, 757, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.98 (m, 1H), 7.86-7.74 (m, 6H), 7.49-7.45 (m, 1H), 7.36-7.30 (m,

2H), 3.66 (d, 1H, J= 9.5 Hz), 2.86 (dd, 1H, J= 9.5 Hz, J= 8.5 Hz), 1.90-1.86 (m, 3H), 1.80-1.75 (m, 2H), 1.34-1.24 (3H), 1.21-1.03 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 196.61, 195.20, 191.09, 141.76, 136.36, 135.36, 135.06, 133.57, 128.79, 128.33, 123.06, 122.69, 45.65, 45.41, 43.36, 34.82, 33.31, 32.44, 26.12, 25.85, 25.66. HR-EI-MS (positive) m/z 381.1462 [M+Na]⁺ (calcd for C₂₄H₂₂O₃Na 381.1467).

(2S,3R)-2-(4-methylbenzoyl)-3-phenylspiro[cyclopropane-1,2'indene]-1',3'-dione (**3ba**)

White solid, 94%, m.p. = 134-136°C, d.r.= 20:2; IR (KBr) v_{max} = 3022, 2923, 2850, 1707, 1678, 1509, 1283, 1221, 1011, 826, 745,

697 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.86 (m, 4H), 7.80-7.75 (m, 2H), 7.37-7.30 (m, 5H),

7.20-7.18 (m, 2H), 4.28 (d, 1H, *J*= 9.5 Hz), 4.23 (d, 1H, *J*= 9.5 Hz), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.54, 194.41, 190.25, 144.88, 142.17, 142.07, 135.31, 135.21, 133.82, 132.55, 129.68, 129.34, 128.67, 128.48, 128.27, 123.16, 122.95, 47.49, 42.59, 40.99, 21.84. HR-EI-MS (positive) *m/z* 389.1150 [M+Na]⁺ (calcd for C₂₅H₁₈O₃Na 389.1154).

(2S,3R)-2-(4-methoxybenzoyl)-3-phenylspiro[cyclopropane-1,2'-indene]-1',3'-dione (**3ca**)

White solid, 36%, m.p. = 126-128°C, d.r.= >20:1; IR (KBr) v_{max} = 3065, 2922, 2852, 1705, 1674, 1601, 1252, 1171, 1068,

842, 745 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.86 (m, 4H), 7.79-7.75 (m, 2H), 7.38-7.30 (m, 5H), 6.86-6.84 (m, 2H), 4.26 (d, 1H, *J*= 9.5 Hz), 4.22 (d, 1H, *J*= 9.5 Hz), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.57, 194.45, 189.08, 164.10, 142.15, 142.03, 135.29, 135.18, 132.57, 130.85, 129.40, 129.31, 128.45, 128.23, 123.12, 122.90, 114.16, 55.60, 47.46, 42.66, 41.00. HR-EI-MS (positive) *m/z* 405.1100 [M+Na]⁺ (calcd for C₂₅H₁₈O₄Na 405.1103).

(2S,3R)-2-(3-chlorobenzoyl)-3-phenylspiro[cyclopropane-1,2'-

indene]-1',3'-dione (3da)

White solid, 58%, m.p. = 112-114°C, d.r.= 20:2; IR (KBr) v_{max} = 3065, 2920, 2853, 1704, 1602, 1435, 1277, 1096, 804, 740, 698 cm⁻

¹. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.87 (m, 3H), 7.82-7.77 (m, 3H), 7.52-7.49 (m, 1H), 7.36-7.31 (m, 6H), 4.25 (d, 1H, *J*= 9.5 Hz), 4.21 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.42, 193.96, 189.65, 142.07, 142.04, 137.70, 135.48, 135.47, 135.42, 133.88, 132.14, 130.30, 129.29, 128.55, 128.42, 126.61, 123.23, 123.09, 47.44, 42.39, 40.40. HR-EI-MS (positive) *m/z* 409.0606 [M+Na]⁺ (calcd for C₂₄H₁₅O₃CINa 409.0607).

(2S,3R)-2-(4-bromobenzoyl)-3-phenylspiro[cyclopropane-1,2'indene]-1',3'-dione (**3ea**)

White solid, 89%, m.p. = 156-158°C, d.r.= >20:1; IR (KBr) v_{max} = 2923, 2853, 1703, 1684, 1584, 1282, 1213, 1066, 832, 792, 751

cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.86 (m, 2H), 7.83-7.77 (m, 4H), 7.56-7.54 (m, 1H), 7.35-7.31 (m, 5H), 4.23 (d, 1H, *J*= 9.5 Hz), 4.19 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.44, 194.11, 189.90, 142.06, 135.49, 135.41, 134.95, 132.37, 132.20, 129.97, 129.29, 128.56, 128.42, 123.25, 123.06, 47.44, 42.50, 40.49. HR-EI-MS (positive) *m/z* 453.0100 [M+Na]⁺ (calcd for C₂₄H₁₅O₃BrNa 453.0102).

(2S,3R)-2-(2-nitrobenzoyl)-3-phenylspiro[cyclopropane-1,2'-

indene]-1',3'-dione (3fa)

White solid, 31%, m.p. = 117-119°C, d.r.= >20:1; IR (KBr) v_{max} = 3022, 2924, 2850, 1709, 1524, 1346, 1289, 792, 748, 711 cm⁻¹. ¹H

NMR (400 MHz, CDCl₃) δ 8.15-8.12 (m, 1H), 8.00-7.98 (m, 1H), 7.85-7.74 (m, 4H), 7.65-7.61 (m, 2H), 7.32-7.22 (m, 5H), 4.13 (d, 1H, *J*= 9.5 Hz), 3.96 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 195.52, 193.98, 193.15, 146.00, 142.10, 141.99, 136.62, 135.57, 135.41, 134.85, 131.74, 131.34, 129.79, 129.18, 128.60, 128.45, 124.35, 123.18, 123.07, 48.23, 43.32, 42.22. HR-EI-MS (positive) *m*/*z* 420.0847 [M+Na]⁺ (calcd for C₂₄H₁₅O₅NNa 420.0848).

(2S,3R)-2-(3-nitrobenzoyl)-3-phenylspiro[cyclopropane-1,2'-

NO₂ indene]-1',3'-dione (**3ga**)

White solid, 71%, m.p. = 142-144°C, d.r.= >20:1; IR (KBr) v_{max} = 3066, 2924, 1702, 1686, 1532, 1352, 1275, 745, 725, 694 cm⁻¹. ¹H

NMR (400 MHz, CDCl₃) δ 8.79-8.78 (m, 1H), 8.41-8.38 (m, 1H), 8.25-8.22 (m, 1H), 7.93-7.87 (m, 4H), 7.65-7.61 (m, 1H), 7.38-7.34 (m, 5H), 4.27 (d, 1H, *J*= 9.5 Hz), 4.21 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.30, 193.45, 189.00, 148.60, 141.97, 141.85, 137.37, 135.50, 135.47, 133.73, 131.70, 130.22, 129.14, 128.52, 128.46, 127.93, 123.24, 123.12, 47.32, 42.25, 39.99. HR-EI-MS (positive) *m/z* 420.0847 [M+Na]⁺ (calcd for C₂₄H₁₅O₅NNa 420.0848).

4-((2S,3R)-1',3'-dioxo-3-phenyl-1',3'-dihydrospiro [cyclopropane-1,2'-indene]-2-carbonyl)benzonitrile (**3ha**) White solid, 97%, m.p. = 171-173°C, d.r.=>20:1; IR (KBr) ν_{max} = 3065, 2922, 2853, 2228, 1704, 1689, 1591, 1282, 1216, 1099,

840, 753 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.01 (m, 2H), 7.91-7.87 (m, 2H), 7.83-7.80 (m, 2H), 7.73-7.70 (m, 2H), 7.35 (m, 5H), 4.24 (d, 1H, *J*= 9.5 Hz), 4.19 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.35, 193.73, 189.87, 142.07, 141.98, 139.05, 135.63, 135.60, 132.90, 131.85, 129.25, 128.87, 128.58, 123.29, 123.18, 117.85, 117.12, 47.50, 42.44, 40.16. HR-EI-MS (positive) *m/z* 400.0952 [M+Na]⁺ (calcd for C₂₅H₁₅O₃NNa 400.0950).

(2S,3R)-2-phenyl-3-(thiophene-2-carbonyl)spiro[cyclopropane-1,2'indene]-1',3'-dione (**3ia**)

White solide, 66%, m.p. =120-121°C, d.r.=>20:1; IR (KBr) ν_{max} = 3084, 2962, 1703, 1660, 1411, 1236, 1054, 858, 764, 731, 698 cm⁻¹. ¹H NMR

(400 MHz, CDCl₃) & 7.94-7.92 (m, 2H), 7.89-7.78 (m, 2H), 7.68-7.62 (m, 2H), 7.37-7.28 (m, 6H),

7.06-7.04 (m, 1H), 4.23 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.42, 194.12, 183.38, 143.35, 142.17, 142.02, 135.38, 135.29, 134.72, 132.83, 132.28, 130.56, 129.28, 128.51, 128.45, 128.33, 127.97, 123.21, 122.99, 47.28, 42.27, 41.44. HR-EI-MS (positive) *m/z* 381.0566 [M+Na]⁺ (calcd for C₂₂H₁₄O₃SNa 381.0561).

(2S,3R)-2-(2-naphthoyl)-3-phenylspiro[cyclopropane-1,2'indene]-1',3'-dione (**3ja**) White solid, 95%, m.p. =91-93°C, d.r.= 20:2; IR (KBr) v_{max} = 3065, 2919, 1704, 1671, 1286, 757, 746, 697 cm⁻¹. ¹H NMR (400

MHz, CDCl₃) δ 8.45 (s, 1H), 8.05-8.03 (m, 1H), 7.92-7.73 (m, 8H), 7.60-7.55 (m, 1H), 7.55-7.47 (m, 1H), 7.43-7.29 (m, 5H), 4.46 (d, 1H, *J*= 9.5 Hz), 4.31 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 194.51, 194.37, 190.62, 142.15, 142.04, 135.98, 135.36, 135.26, 133.65, 132.50, 130.49, 129.86, 129.36, 128.95, 128.52, 128.33, 127.91, 127.01, 123.96, 123.19, 122.97, 47.59, 42.61, 40.94. HR-EI-MS (positive) *m/z* 425.1154 [M+Na]⁺ (calcd for C₂₈H₁₈O₃Na 425.1154).

(2S,3R)-2-acetyl-3-phenylspiro[cyclopropane-1,2'-indene]-1',3'-dione (**3ka**) White solid, 67%, m.p. = 131-133°C, d.r.= >20:1; IR (KBr) ν_{max} = 3050, 2920, 2850, 1711, 1597, 1292, 1170, 756, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.97 (m, 1H), 7.85-7.76 (m, 3H), 7.33-7.28 (m, 5H), 4.04 (d,

1H, *J*= 9.5 Hz), 3.70 (d, 1H, *J*= 9.5 Hz), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.79, 195.12, 193.73, 142.07, 141.97, 135.42, 135.34, 132.20, 129.23, 128.44, 128.31, 123.09, 123.02, 47.19, 44.04, 42.63, 30.41. HR-EI-MS (positive) *m/z* 313.0844 [M+Na]⁺ (calcd for C₁₉H₁₄O₃Na 313.0841).

(2S,3R)-2-phenyl-3-propionylspiro[cyclopropane-1,2'-indene]-1',3'-dione (**3la**)

White solid, 95%, m.p. =131-133°C, d.r.= >20:1; IR (KBr) ν_{max} = 3062, 2944, 2928, 1719, 1702, 1594, 1287, 1099, 749 cm⁻¹. ¹H NMR (400 MHz,

CDCl₃) δ 7.98-7.96 (m, 1H), 7.85-7.76 (m, 3H), 7.33-7.27 (m, 4H), 4.06 (d, 1H, *J*= 9.5 Hz), 3.69 (d, 1H, *J*= 9.5 Hz), 2.80-2.68 (m, 1H), 2.60-2.48 (m, 1H), 1.11 (t, 3H, *J*= 7.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 202.34, 195.17, 193.92, 142.04, 141.97, 135.35, 135.30, 132.33, 129.23, 128.41, 128.25, 123.05, 122.97, 47.10, 43.23, 42.26, 36.51, 7.73. HR-EI-MS (positive) *m/z* 327.0999 [M+Na]⁺ (calcd for C₂₀H₁₆O₃Na 327.0997).

Ethyl (2S,3R)-1',3'-dioxo-3-phenyl-1',3'-dihydrospiro[cyclopropane-1,2'-indene]-2-carboxylate (**3ma**) Yellow oil, 45%, d.r. = 20:9; IR (KBr) v_{max} = 2955, 2924, 2850, 1732, 1709, 1595, 1464, 1288, 1195, 1021, 749, 695 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 6.5 Hz, 1H), 7.84-7.76 (m, 3H), 7.33-7.28 (m, 5H), 4.32-4.21 (m, 2H), 4.01 (d, *J* = 8.7 Hz, 1H), 3.59 (d, *J* = 8.7 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.79, 193.57, 166.49, 142.05, 135.16, 135.13, 132.00, 129.13, 128.29, 128.12, 122.89, 61.82, 45.77, 42.16, 36.73, 14.14. HR-EI-MS (positive) m/z 327.0999 [M+Na]⁺ (calcd for C₂₀H₁₆O₃Na 327.0997).

Preparation of compound 3na

Under a Ar atmosphere, to a solution of 2-benzylidenebenzofuran-3(2H)-one (0.22 mmol) and dimethyl(2-oxo-2-phenylethyl)sulfonium bromide (0.26 mmol) in HFIP (2.0 mL) was added Et₃N (0.03 mL, 0.26 mmol). The resulting mixture was stirred at 100°C for a specified time. The reaction was monitored by TLC spectroscopy. After the reaction was completed, the solvent was then removed on a rotary evaporator at reduced pressure and the residue was subjected to column chromatographic isolation on silica gel (eluted with petroleum ether/EtOAc 50:1-20:1) to give the annulation product 3na.

(2'S,3'R)-2'-benzoyl-3'-phenyl-3H-spiro[benzofuran-2,1'-cyclopropan]-3-

one (**3na**) Yellow solid, 31%, m.p. = 103-104°C, d.r. = 20:18; IR (KBr) v_{max} = 2959, 2922, 2852, 1710, 1460, 740 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93

(m, 2H), 7.64-7.51 (m, 3H), 7.42-7.33 (m, 8H), 7.19-7.10 (m, 2H), 3.97 (d, 1H, J= 9.5 Hz), 3.90 (d, 1H, *J*= 9.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 193.87, 189.90, 170.78, 137.13, 136.44, 133.75, 133.25, 128.93, 128.89, 128.71, 128.51, 127.86, 124.32, 122.79, 121.44, 113.54, 39.58, 35.97. HR-EI-MS (positive) m/z 363.0997 [M+Na]⁺ (calcd for C₂₃H₁₆O₃Na 363.0997).

Transformations of 3aa to Indeno[1,2-c]Pyridazine Derivatives

A round-bottom flask equipped with a magnetic stir bar was charged with 4 Å MS (200 wt %) and InCl₃ (0.2 equiv) under Ar inert atmosphere. A DCM solution of 2-benzoyl-3phenylspiro[cyclopropane-1,2'-indene]-1',3'-dione 3aa (1 equiv) and aryl hydrazine (1 equiv) was added, and the mixture was stirred at room temperature until completion of the reaction (as monitored by TLC). The reaction mixture was filtered through a small pad of Celite that was subsequently washed with multiple small portions of DCM, and the solvent was evaporated on a rotary evaporator. The crude mixture was further purified by column chromatography on silica gel with ethyl acetate/hexane as an eluent.

4-benzoyl-2,3-diphenyl-2,3,4,4a-tetrahydro-5H-indeno[1,2-c]pyridazin-

5-one (**9**) Yellow oil, 57%; IR (KBr) ν_{max} = 3195, 2918, 2849, 1708, 1595, 1493, 1390, 1248, 747, 692 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.99 (m, 1H), 7.85-7.76 (m, 4H), 7.68-7.66 (m, 2H), 7.32-7.23 (m, 9H), 7.14-7.11

(m, 5H), 6.96-6.94 (m, 2H), 6.77-6.74 (m, 1H), 4.95 (d, 1H, J= 4.4 Hz), 4.00 (t, 1H, J= 3.9 Hz), 3.50 (d, 1H, J= 3.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 198.37, 196.74, 146.27, 143.72, 143.16, 142.53, 140.60, 136.16, 135.91, 131.80, 129.37, 129.02, 128.78, 128.08, 126.53, 125.72, 123.54, 123.30, 119.37, 113.31, 67.81, 54.59, 54.08. HR-EI-MS (positive) *m/z* 465.1577 [M+Na]⁺ (calcd for C₃₀H₂₂O₂N₂Na 465.1579).

Reference

[1] (a) C. J. Lee, C. N. Sheu, C. C. Tsai, Z. Z. Wu, W. W. Lin, Chem. Commun. 2014, 50, 5304. (b) T. M. Kadayat, C. Park, K. Y. Jun, T. T. Magar, G. Bist, H. Y. Yoo, Y. Kwon, E. S. Lee, Bioorg. Med. Chem. 2015, 23, 3499.

[2] S. Wang, L. Xu, Y. T. Lu, Y. F. Liu, B. Han, T. Liu, J. Tang, J. Li, J. P. Wu, J. Y. Li, L. F. Yu,

F. Yang, Eur. J. Med. Chem. 2017, 130, 195.

[3] R. Dey, P. Kumar, P. Banerjee, J. Org. Chem. 2018, 83, 5438.

5 Original spectrogram

¹³C NMR of compound **3aa**

7, 29 7, 20 7,

$\begin{array}{c} 7&7&7\\ 7&7&9\\ 7&7&9\\ 7&7&9\\ 7&7&9\\ 7&7&9\\ 7&7&9\\ 7&7&9\\ 7&7&9\\ 7&7&9\\ 7&7&2&2\\ 7&7&2&2\\ 7&7&2&2\\ 7&7&2&2\\ 7&7&2&2\\ 7&7&2&2\\ 7&7&2&2\\ 7&7&2&2\\$

¹³C NMR of compound **3ai**

¹H NMR of reaction mixture **3al**

¹³C NMR of compound **3am**

¹³C NMR of compound **3ao**

7,7,35 17,39 17,49

¹³C NMR of compound **3as**

¹H NMR of reaction mixture **3at**

¹H NMR of compound **3da**

¹³C NMR of compound **3ga**

¹³C NMR of compound **3ia**

¹H NMR of reaction mixture **3ja**

¹H NMR of compound **3la**

¹H NMR of reaction mixture **3la**

HJ-62-1.5.ser —

HJ-62-1.5.ser —

6 X-ray crystallographic data of 3ag

Crystal data and structure refinement

Empirical formula	C25H18O4
Formula weight	382.39
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	10.0932(6)
b/Å	17.3340(10)
c/Å	11.3690(7)
α/°	90
β/°	104.954(6)
γ/°	90
Volume/Å3	1921.7(2)
Z	4
pcalcg/cm3	1.322
µ/mm-1	0.089
F(000)	800.0
Crystal size/mm3	$0.13 \times 0.12 \times 0.11$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.176 to 50
Index ranges	$-11 \le h \le 11, -20 \le k \le 20, -11 \le l \le 13$
Reflections collected	8529
Independent reflections	3382 [Rint = 0.0264, Rsigma = 0.0334]
Data/restraints/parameters	3382/0/263
Goodness-of-fit on F2	1.076
Final R indexes [I>= 2σ (I)]	R1 = 0.0414, wR2 = 0.0931
Final R indexes [all data]	R1 = 0.0508, wR2 = 0.0989
Largest diff. peak/hole / e Å-30.16/-0.22	