Supplementary Information

One-pot preparation of multicomponent photocatalyst with

$(\mathrm{Zn}, \mathrm{Co}, \mathrm{Ni})(\mathrm{O}, \mathrm{S}) / \mathrm{Ga}_{2} \mathrm{O}_{3}$ nanocomposites to significantly enhance hydrogen production

Hairus Abdullah ${ }^{\mathrm{a},{ }^{*}}$, Riski Titian Ginting ${ }^{\mathrm{b}}$, Anita Christine Sembiring ${ }^{\text {a }}$, Noto Susanto Gultom ${ }^{\mathrm{c}}$,
Hardy Shuwanto ${ }^{\text {c }}$, Dong-Hau Kuo ${ }^{\text {c,** }}$
${ }^{a}$ Department of Industrial Engineering, Universitas Prima Indonesia, Medan, Indonesia
${ }^{b}$ Department of Electrical Engineering, Universitas Prima Indonesia, Medan, Indonesia ${ }^{c}$ Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan

Fig. S1 Reusability performance of ZNC-10G nanocomposite for five-cycle photocatalytic HER

Table S1 EDS elemental analysis of ZNC-10G nanocomposite

Elements	Atomic percentages
Zn	39.97%
Ni	0.86%
Co	1.01%
Ga	2.82%
O	28.73%
S	26.61%

The energy of single photon (Ep) with wavelength of λ is calculated using the equation below:
$E p=h c / \lambda$
where h is Planck's constant ($6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}$), c is the speed of light ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$), and λ is the wavelength of the incident light.

The total energy of incident light (Et) is calculated using the equation below:
$E t=P A t$
where P is the power density of the incident light $\left(\mathrm{W} / \mathrm{m}^{2}\right)$, A is the irradiation area $\left(\mathrm{m}^{2}\right)$, and t is the duration of the incident light irradiation (s).

The number of incident photons (N) is determined by the following equation:
$N=E t / E p=P A t \lambda / h c$
The apparent quantum yield (AQY) is calculated by using the following equation:

$$
\begin{aligned}
A Q Y= & \frac{2 x \text { number of envolved hydrogen molecules }}{n u m b e r ~ o f ~ i n c i d e n t ~ p h o t o n s ~} \times 100 \% \\
& =\frac{2 n \text { Na hc }}{P A t \lambda} \times 100 \%
\end{aligned}
$$

where n is the amount of hydrogen evolved (mol), NA is Avogadro's constant ($6.02 \times 1023 / \mathrm{mol}$).
Based on the formula, the calculated AQY was 10.4 \%.

