Supplementary Information

One-pot preparation of multicomponent photocatalyst with $(Zn,Co,Ni)(O,S)/Ga_2O_3 \ nanocomposites \ to \ significantly \ enhance \ hydrogen$ production

Hairus Abdullah ^{a,*}, Riski Titian Ginting ^b, Anita Christine Sembiring ^a, Noto Susanto Gultom ^c,

Hardy Shuwanto ^c, Dong-Hau Kuo ^{c,**}

^aDepartment of Industrial Engineering, Universitas Prima Indonesia, Medan, Indonesia

^bDepartment of Electrical Engineering, Universitas Prima Indonesia, Medan, Indonesia

^cDepartment of Materials Science and Engineering, National Taiwan University of Science and

Technology, No. 43, Sec. 4, Keelung Road, Taipei 10607, Taiwan

Fig. S1 Reusability performance of ZNC-10G nanocomposite for five-cycle photocatalytic HER

Table S1 EDS elemental analysis of ZNC-10G nanocomposite

Elements	Atomic
	percentages
Zn	39.97 %
Ni	0.86 %
Co	1.01 %
Ga	2.82 %
O	28.73 %
S	26.61 %

The energy of single photon (Ep) with wavelength of λ is calculated using the equation below:

$$Ep = h c/\lambda$$

where h is Planck's constant (6.6 x 10^{-34} J.s), c is the speed of light (3 x 10^8 m/s), and λ is the wavelength of the incident light.

The total energy of incident light (Et) is calculated using the equation below:

$$Et = PAt$$

where P is the power density of the incident light (W/m^2) , A is the irradiation area (m^2) , and t is the duration of the incident light irradiation (s).

The number of incident photons (N) is determined by the following equation:

$$N = Et/Ep = PAt\lambda/hc$$

The apparent quantum yield (AQY) is calculated by using the following equation:

$$AQY = \frac{2 \text{ } x \text{ } number \text{ } of \text{ } envolved \text{ } hydrogen \text{ } molecules}}{number \text{ } of \text{ } incident \text{ } photons} x \text{ } 100 \text{ } \%$$

$$= \frac{2 \text{ } n \text{ } Na \text{ } hc}{PAt\lambda} x \text{ } 100 \text{ } \%$$

where n is the amount of hydrogen evolved (mol), NA is Avogadro's constant (6.02 x 1023 /mol). Based on the formula, the calculated AQY was 10.4 %.