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1. Computational Details

1.1 Surface and Solvation Model

The closed-packed Cu(111) single-crystal surface is generally chosen as representative crystal plane for 

both experimental and theoretical studies due to its high selectivity to CO2 electroreduction into C1 products. 

Considering complexity of real CO2 electroreduction systems, the aqueous-phase environment is included. 

Our present solvation model is on the basis of the previous experimental and theoretical studies on structure 

and orientation of H2O molecules,1-3 where 12 explicit H2O molecules with two relaxed bilayer structures 

were employed to simulate solvation effect in order to better model interactions between solvent and 

adsorbates and decrease size of the simulated systems as much as possible. Considering the coverage is 2/3 

of H2O monolayer, therefore, a (3x3) Cu(111) slab model with nine metal atoms per layer and theoretical 

equilibrium lattice constant of 3.66 Ǻ by using four metal layers was created. Alkali metals Na and Cs with 

different atomic size are incorporated into Cu(111)/H2O interface model in this paper. Alkali metal cations 

have been hypothesized to adsorb to the electrode surface or interact with surface-adsorbed species non-

covalently.4, 5 However, surface X-ray scatting data have suggested alkali metal cations to be solvated and 

not adsorbed at the electrode surface.6 In this paper, alkali metals Na and Cs are initially adsorbed on Cu(111) 

surface. However, alkali metals are spontaneously solvated and not adsorbed on Cu(111) after geometry 
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relaxation and optimization, confirming experimental observations, as can be seen in Fig. S1.

                     
(a)                                                 (b)

Fig. S1. The Solvation Model Containing Alkali Metal Cations on Cu(111): (a) Side View; (b) Top View.

1.2 CO Coverage-Dependent Equilibrium Potential

As elaborated in our recent study,7 the differential adsorption energy of CO, △E(θ) exhibits reasonable 

linear dependence on θCO on Cu(111). Linearly fitting △E(θ)~θCO data to straight line enables us calculate 

△E(θ) at any θCO. Thus, the linear relationships between CO coverage (θCO) and the calculated equilibrium 

potentials (U) can be obtained on Cu(111). It can be observed that more CO coverage will lead to more 

negative equilibrium potential for CO2 electroreduction, suggesting that overpotential may mainly originate 

from the adsorbed CO on Cu electrodes. The calculated thermodynamical equilibrium potential is ca. 0.27 V 

(vs. RHE) when θCO is closely zero, which is comparable with thermodynamical equilibrium potential of 0.17 

V (vs. RHE) for CO2 electroreduction from literature and confirm the reasonability of the present theoretical 

model to some degree.8 Our recent study focused on CO adsorption with low coverage of 1/9 ML on clean 

Cu(111) and calculated equilibrium potential is ca. 0.14 V (vs. RHE),7 corresponding to the condition of low 

overpotential compared with thermodynamical equilibrium potential when θCO is closely zero (ca. 0.13 V). 

In this paper, alkali metals Na with smaller atomic size and Cs with relatively larger atomic size are 

integrated into our recent proposed CO coverage-dependent Cu(111)/H2O electrochemical interface model, 

which are used to study influences of alkali metal cations on CO2 electroreduction mechanisms in aqueous 

electrolyte.

1.3 Computational Parameters

All calculations were performed in the framework of DFT using the generalized gradient approximation 
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of Perdew–Burke–Ernzerhof exchange correlation functional.9 Ultrasoft pseudopotentials were employed to 

describe the nuclei and core electrons and a plane-wave basis set was used to self-consistently solve the 

Kohn-Sam equations.10 A kinetic energy cutoff of 30 Ry and a charge-density cutoff of 300 Ry were used to 

make basis set finite. The smearing technique of Methfessel-Paxton was employed to treat the Fermi surface 

with a smearing parameter of 0.02 Ry.11 All DFT calculations were carried out by the PWSCF codes 

included in Quantum ESPRESSO distribution.12 A (3×3×1) uniformly shifted k-mesh for (3×3) supercell 

were used to implement Brillouin-zone integrations with the special-point technique. A vacuum layer of 16Å 

was placed above the top layer of slab, which is sufficiently large to ensure that the interactions are 

negligible between repeated slabs. The Cu atoms in the bottom two layers are fixed at the theoretical bulk 

positions, whereas the top two layers and adsorbates involving solvent are allowed to relax. Structural 

optimization was performed until the Cartesian force components acting on each atom were brought below 

10-3 Ry/Bohr and the total energy was converged to within 10-5 Ry. The saddle points and minimum energy 

paths (MEPs) were located by using the climbing image nudged elastic band (CI-NEB) method.13, 14 Zero 

point energy (ZPE) corrections were applied into calculations of the activation and reaction energies from 

MEP analysis, in which density functional perturbation theory was used to study the vibrational properties.15 

The ZPEs were calculated using the PHONONS code that contained in the Quantum ESPRESSO 

distribution.12

2. Minimum Energy Pathway (MEP) Analysis
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Fig. S2. The MEP analysis of (a) the first elementary step of CO2 electroreduction and (b) subsequent trans-

COOH electroreduction into CO and H2O at Na cation promoted Cu(111)/H2O interface (an asterisk * indicates 
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adsorption to the Cu surface)
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Fig. S3. The MEP analysis of (a) the first elementary step of CO2 electroreduction and (b) subsequent trans-

COOH electroreduction into CO and H2O at Cs cation promoted Cu(111)/H2O interface (an asterisk * indicates 

adsorption to the Cu surface)
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Fig. S4. The MEP analysis of (a) CO2 electroreduction into COOH species; (b) CO2 electroreduction into CO 

intermediate at clean, Na and Cs cations promoted Cu(111)/H2O interface (an asterisk * indicates adsorption to 

the Cu surface)
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Fig. S5. The MEP analysis of CO electroreduction into CHO species intermediate at clean, Na and Cs cations 

promoted Cu(111)/H2O interface (an asterisk * indicates adsorption to the Cu surface)
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Fig. S6. The MEP analysis of (a) CHO electroreduction into CH2O species; (b) CHO electroreduction into CHOH 

species at clean, Na and Cs cations promoted Cu(111)/H2O interface (an asterisk * indicates adsorption to the Cu 

surface)
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Fig. S7. The MEP analysis of (a) CH2O electroreduction into CH2OH species; (b) CH2O electroreduction into 

CH3O species at clean, Na and Cs cations promoted Cu(111)/H2O interface (an asterisk * indicates adsorption to 

the Cu surface)
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Fig. S8. The MEP analysis of (a) CHOH electroreduction into CH2OH species; (b) CHOH electroreduction into 

CH species along with H2O formation at clean, Na and Cs cations promoted Cu(111)/H2O interface (an asterisk * 

indicates adsorption to the Cu surface)
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Fig. S9. The MEP analysis of CH3O electroreduction into CH3OH product at clean, Na and Cs cations promoted 

Cu(111)/H2O interface (an asterisk * indicates adsorption to the Cu surface)
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Fig. S10. The MEP analysis of (a) CH2OH electroreduction into CH2 species along with H2O formation; (b) 

CH2OH electroreduction into CH3OH product at clean, Na and Cs cations promoted Cu(111)/H2O interface (an 

asterisk * indicates adsorption to the Cu surface)
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Fig. S11. The MEP analysis of (a) CH electroreduction into CH2 species; (b) CH2 electroreduction into CH3 

species at clean, Na and Cs cations promoted Cu(111)/H2O interface (an asterisk * indicates adsorption to the Cu 

surface)
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Fig. S12. The MEP analysis of CH3 electroreduction into CH4 product at clean, Na and Cs cations promoted 

Cu(111)/H2O interface (an asterisk * indicates adsorption to the Cu surface)
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