Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Efficient Synthesis of 6,6´-Diamido-2,2´-dipicolylamine Ligands for Potential Phosphate Anion Sensing

Shuai Wang,^{a,b} Lichong Gong, ^c Georges El Fakhri,^{*a} Junfeng Wang^{*a}

^a Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical

School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, United States

^b School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China

^c Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical

School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States

* Corresponding authors:

Junfeng Wang (jwang83@mgh.harvard.edu)

Georges El Fakhri (ELFAKHRI.GEORGES@MGH.HARVARD.EDU)

Table of Contents

I. Condition optimizations for synthesis of 9	2
II.LCMS spectra of intermediate	2
III. NMR spectra of products	3-21
IV.LCMS spectra of products	22-30

Entry	Product (R ₁)	Reactant	Solvent	Temp. (°C)	Time (h)	Yield ^a (%)
1	9a (-CH ₃)	(CH ₃ CO) ₂ O	CH_2Cl_2	40	3h	N.D.
2			THF	65	3h	N.D.
3			Toluene	110	3h	35
4			Neat	140	3h	75
5			Neat	140	4h	96
6			Neat	140	5h	68
7	9a (-CH ₃)	CH ₃ COCl	Neat	51	4h	20
8	9a (-CH ₃)	CH ₃ COCl	Neat	140	4h	89
9	9b (-Ph)		CH ₂ Cl ₂	40	3h	N.D.
10			THF	65	3h	N.D.
11		DLCOCI	Toluene	110	3h	28
12		Pheoel	Neat	140	3h	56
13			Neat	140	6h	78
14			Neat	140	8h	95
15	9c (-CF ₃) (CF ₃ CO) ₂	$(CE_{C}O)_{0}O$	Neat	RT	3h	N.D.
16		70 (-CF3) (CF3CO)2O	Neat	40	3h	N.D.

Table S1. Condition optimizations for the synthesis of compound **8** with anhydrides and acyl chlorides.

^{*a*} Isolated yields of the corresponding products. (N.D. = not detected; RT = room temperature.)

Figure S1. The LCMS spectra of intermediate.

Figure S3. The 13 C spectra of compound **13**.

Figure S5. The 13 C spectra of compound 7.

Figure S7. The 13 C spectra of compound **8**.

Figure S9. The ¹³C spectra of compound **9a**.

Figure S11. The ¹³C spectra of compound **10a**.

-2.00

Figure S13. The 13 C spectra of compound **11a**.

Figure S15. The ¹³C spectra of compound **12a**.

Figure S17. The 13 C spectra of compound **6a**.

1,254 1,254 1,254 1,254 1,254 1,254 1,254 1,254 1,254 1,254 1,254 1,228 1,238

Figure S19. The ${}^{13}C$ spectra of compound **9b**.

7,738 7,739 7,749

Figure S21. The ¹³C spectra of compound **10b**.

Figure S23. The ¹³C spectra of compound **11b**.

Figure S25. The 13 C spectra of compound **12b**.

Figure S29. The 13 C spectra of compound **13**.

Figure S31. The 13 C spectra of compound **9d**.

Figure S33. The 13 C spectra of compound **10d**.

Figure S35. The 13 C spectra of compound **11d**.

Figure S37. The 13 C spectra of compound **12d**.

Figure S39. The 13 C spectra of compound **6d**.

Figure S41. The LCMS spectra of compound 8.

Figure S42. The LCMS spectra of compound **9a**.

Figure S43. The LCMS spectra of compound 10a.

Figure S44. The LCMS spectra of compound 11a.

Figure S45. The LCMS spectra of compound 12a.

Figure S46. The LCMS spectra of compound 13a.

Figure S47. The LCMS spectra of compound 9b.

Figure S49. The LCMS spectra of compound 11b.

Figure S53. The LCMS spectra of compound 10d.

Figure S55. The LCMS spectra of compound 12d.

Figure S56. The LCMS spectra of compound 6d.