Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

S1

Supporting Information (New Journal of Chemistry)

Photochemistry of triphenylamine (TPA) in homogeneous solution and the role of transient N-

phenyl-4a,4b-dihydrocarbazole. A steady-state and time-resolved investigation.

S. Protti^a, Mariella Mella^a and S. M. Bonesi^{*,a,b,c}

^aPhotoGreen Lab, Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.

^bUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química

Orgánica, Buenos Aires, C1428EGA, Argentina.

^cCONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono

(CIHIDECAR), Buenos Aires, C1428EGA, Argentina.

E-mail: smbonesi@qo.fcen.uba.ar (Sergio M. Bonesi)

Results	Page				
1. Decay traces of N-phenyl-4 <i>a</i> ,4 <i>b</i> -dihydrocarbazole (DHC ₀) transient, reciprocal plot and					
kinetic parameters measured in acetonitrile under N ₂ and N ₂ O atmospheres.					
2. Time-resolved UV-visible absorption spectra, decay traces and reciprocal plots of N-	S 3				
phenyl- $4a$, $4b$ - dihydrocarbazole (DHC ₀) transient in different homogeneous media under					
N_2 and O_2 atmospheres.					
3. Decay traces of transient DHC $_0$ and Intermediate I recorded in acetonitrile.					
4. ¹ H-NMR spectra of the reaction mixture obtained after irradiation (366 nm) of TPA in	S7				
different solvents under molecular oxygen.					
5. UV-visible spectrum of N-phenylcarbazole (N-PhCA) and triphenylamine (TPA).	S9				

1. Decay traces of N-phenyl-4*a*,4*b*-dihydrocarbazole (DHC₀) transient, reciprocal plot and kinetic parameters measured in acetonitrile under N_2 and N_2O atmospheres.

Figure S1. (a) Decay traces of N-phenyl dihydrocarbazole (DHC₀) transient in acetonitrile recorded at $\lambda_{abs} = 410$ nm after a laser pulse of 355 nm under N₂ and N₂O atmosphere; (b) Reciprocal plot of the concentration of the DHC₀ transient versus time in N₂- (\circ) and N₂O-saturated (Δ) acetonitrile solution recorded at 410 nm.

Table S1. Lifetime and rate constant values of DHC_0 in acetonitrile at 410 nm under different conditions.^a

Atmosphere	τ_d / μs	$k_{\rm d} / {\rm s}^{-1}$	τ_R / μs	$k_{\rm R} / {\rm M}^{-1}.{\rm s}^{-1}$	$ au_{O2}$ / μs	$k_{\rm O2} / {\rm M}^{-1}.{\rm s}^{-1}$
N ₂	5.21±0.07	1.9x10 ⁵	59.0±0.8	1.8x10 ⁹		
N_2O	4.71±0.09	2.1x10 ⁵	45.5±0.9	1.8x10 ⁹		
O ₂					23.9±0.3	2.1×10^7

^aIrradiation of TPA in acetonitrile (1.0x10⁻³ M) with a laser pulse of 355 nm. ε (410 nm) = 8903 M⁻¹.cm⁻¹.

2. Time-resolved UV-visible absorption spectra, decay traces and reciprocal plots of N-phenyl-4a,4b- dihydrocarbazole (DHC₀) transient in different homogeneous media under N₂ and O₂ atmospheres.

Figure S2. Time-resolved UV-visible absorption spectra of N-phenyl-*4a*, *4b*-dihydrocarbazole (DHC₀) transient in dichloromethane after a laser pulse of 355 nm under (a) N₂ and (b) O₂ atmospheres. Decay traces of DHC₀ transient in dichloromethane recorded at $\lambda_{abs} = 630$ nm after a laser pulse of 355 nm under (c) N₂ and (d) O₂ atmospheres. Reciprocal plot of the concentration of the DHC₀ transient versus time in N₂- (\circ) dichloromethane solution recorded at 630 nm.

Figure S3. Time-resolved UV-visible absorption spectra of N-phenyl-4a,4b-dihydrocarbazole (DHC₀) transient in acetonitrile water (9:1) after a laser pulse of 355 nm under (a) N₂ and (b) O₂ atmospheres. Decay traces of N-phenyl-4a,4b-dihydrocarbazole (DHC₀) transient in acetonitrile water (9:1) recorded at $\lambda_{abs} = 620$ nm after a laser pulse of 355 nm under (c) N₂ and (d) O₂ atmospheres. Reciprocal plot of the concentration of the DHC₀ transient versus time in N₂- (\circ) acetonitrile water (9:1) solution recorded at 620 nm.

Figure S4. Time-resolved UV-visible absorption spectra of N-phenyl-*4a*, *4b*-dihydrocarbazole (DHC₀) transient in TFE after a laser pulse of 355 nm under (a) N₂ and (b) O₂ atmospheres. Decay traces of N-phenyl-*4a*, *4b*-dihydrocarbazole (DHC₀) transient in TFE recorded at $\lambda_{abs} = 620$ nm after a laser pulse of 355 nm under (c) N₂ and (d) O₂ atmospheres. Reciprocal plot of the concentration of the DHC₀ transient versus time in N₂- (\circ) TFE solution recorded at 620 nm.

3. Decay traces of transient DHC₀ and Intermediate I recorded in acetonitrile.

Figure S5. (a) Decay traces of intermediate I in acetonitrile recorded at $\lambda_{abs} = 410$ nm after a laser pulse of 355 nm under O₂ atmosphere in the absence (blue line) and presence (black line) of thioanisole. (b) Decay traces of transient DHC₀ in acetonitrile recorded at $\lambda_{abs} = 625$ nm after a laser pulse of 355 nm under O₂ atmosphere at different concentrations of triphenylphosphine (PPh₃).

4. ¹H-NMR spectra of the reaction mixture obtained after irradiation (366 nm) of TPA in different solvents under molecular oxygen.

Figure S6. ¹H-NMR spectra of the photolyzed reaction mixtures after direct irradiation (366 nm) of triphenylamine (TPA) in different solvents under O₂ atmosphere during 6 hours.

Figure S7. ¹H-NMR spectra (aromatic chemical shifts only) of the photolyzed reaction mixtures after direct irradiation (366 nm) of triphenylamine (TPA) in different solvents under O₂ atmosphere during 6 hours.

5. UV-visible spectrum of N-phenylcarbazole (N-PhCA) and triphenylamine (TPA).

Figure S8. UV-visible spectrum of (a) N-Phenylcarbazole (N-PhCA) recorded in methanol and (b) triphenylamine (TPA) in acetonitrile at 25°C.