Electronic Supplementary Information (ESI)

Efficient FAPbI₃-PbS quantum dot graphene -based phototransistors

Samaneh Aynehband^{1,2}, Maryam Mohammadi¹, Rana Poushimin², Jean-Michel Nunzi²,

Abdolreza Simchi^{1,3}

¹ Department of Materials Science and Engineering, Sharif University of Technology, 14588

Tehran, Iran

² Department of Chemistry, Department of Physics, Engineering Physics and Astronomy,

Queens University, Kingston, Ontario K7L 3N6, Canada

³ Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran

Fig.S1. Schematic illustration of ligand exchange process.

Fig.S2. Wetting angle measurement of a) LPE (102^{\Box}) and b) GP (43^{\Box}) samples on graphene.

Fig.S3. High resolution TEM images showing QDs. a) SPE with marked paralleled-fringe areas. b) LPE without signs of inter-dot fusion.

Fig.S4. Absorption spectra of CQD films on Graphene/Si/SiO₂ substrate.

Fig.S5. I-V curves of GP, LPE and SPE phototransistors a) in dark condition and under white illumination at V_G = 0V and b) under white illumination at various gate voltages. c) I-t characteristics of all three devices under white illumination and V_{SD} =-1 V and d) the absorption spectrum of PbS QDs.

Table.S1. Figures of merit for the graphene-based phototransistors examined under white illumination at $V_{SD} = 20$ V.

Device	R(A/W)	J _d (A/cm ²)	D*(Jones)
GP	0.002	0.004	5*10 ⁷
SPE	0.004	0.006	108
LPE	0.003	0.005	7*10 ⁷

Fig.S6. Air stability results of the devices.

Photoresponse(µA)in day					
	1 st	7 th	14 th	21 th	28 th
Device name					
GP	0.02	0.02	0.02	0.02	0.02
LPE	0.21	0.20	0.19	0.16	0.15
SPE	1.8	1.8	1.76	1.69	1.66

Table.S2. The air stability results of all devices for 28 days.

Fig.S7. Transfer characteristics of GP, LPE and SPE samples under IR illumination at V_{SD} = 1V.

Ref.	V _g (V)	Light power (mW)	I_{LIGHT}/I_{DARK}
PbS-OA/G [A]	30-60	30pW	1.4
PbS/G [B]	-20-80	0.00068mW	1.1
PbS-EDT/G [C]	-40-60	267pW	2
G/PbS-EDT/G [D]	20	0.86µW	13
PbS-FAPbI ₃ /G	-1	110mW	34
[this work]			

Table.S3. Performance of PbS QDs/graphene phototransistors.

Table.S4. Fitted data values from the Nyquest polts according to the equvalent circuit.

Sample	$R_s(\Omega)$	C ₁ (µF)	$R_1(\Omega)$
GP	44	0.9	14230
LPE	18	0.5	1260
SPE	20	5.3	94

References:

(A) Z. Sun, et al. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity, Advanced Materials, 14 (2012), 5878-5883.

(B) D. Zhang, et al. Understanding Charge Transfer at PbS-Decorated Graphene Surfaces toward a Tunable Photosensor, Advanced Materials, 24 (2012), 2715-2720.

(C) G. Konstantatos, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain, Nature nanotechnology, 7 (2012) 363-368.

(D) Q. Nian, et al. Graphene/PbS-Quantum Dots/Graphene Sandwich Structures Enabled by Laser Shock Imprinting for High Performance Photodetectors, ACS Applied Materials & Interfaces, 9 (2017), 44715–44723.