Supporting information

A smart sensing Zn (II) coordination polymer based on a new viologen ligand exhibiting photochromic and thermochromic and multiple solid detection properties

Heyi Zhang, Fangyuan He, Xiaonan Li ,Zhihui Wang and Hong Zhang *

Scheme 1 Synthesis of viologen ligand 1,1'-bis(3-cyanobenzyl)-[4,4'-bipyridine] dichloride.

Figure S1 The TGA date of the compound 1.

Figure S2 EPR spectral changes of the compound 1 before and after irradiation with Xe lamp.

Figure S3 (a) Uv-vis diffuse-reflectance spectral changes of compound 1 by heat at about $98{ }^{\circ} \mathrm{Cfor} 6 \mathrm{~min}$; (b) EPR spectral changes of compound 1 by heat at about $98^{\circ} \mathrm{C}$ for 6 min .

Figure S4 FTIR spectra of compound 1before irradiation (black), after irradiation (red), blue ray (green) and heat (blue).

Figure $\mathbf{S 5}$ Powder XRD patterns of compound 1 before irradiation (red), after irradiation (blue), heat (green), blue ray(pink). The black line is simulated curve.

Figure S6 (a) UV-vis spectra and photographs of compound 1 before and after irradiation with blue ray; (b) EPR spectral changes of the compound 1 before and after irradiation with blue ray.

Figure S7 (a) EPR spectral changes of CP@aniline; (b) EPR spectral changes of CP@ ammonia.

Figure S8 PXRD patterns of $\mathrm{CP} @$ different benzenes. The black line is simulated curve.

Figure S9 The luminescence emission spectral changes $(\lambda \mathrm{ex}=380 \mathrm{~nm})$, when detected different benzenes in solid state.

Figure S10 The blue ray luminescence emission spectrum changes of compound 1.

Figure S11 The thermally controlled luminescence emission spectra of the compound 1 heated at about $98^{\circ} \mathrm{C}$ for 6 min.

Figure S12 The ${ }^{1} \mathrm{H}$ NMR spectrum of 1,1'-bis(3-cyanobenzyl)-[4,4'-bipyridine] dichloride ligand in $\mathrm{D}_{2} \mathrm{O}(600$ MHz).

Figure S13 The ${ }^{13} \mathrm{C}$-NMR spectrum of 1,1'-bis(3-cyanobenzyl)-[4,4'-bipyridine] dichloride ligand in $\mathrm{D}_{2} \mathrm{O}$ (151MHz).

Table S1. Crystal Data of the compound 1.

Identification code	1
Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Zn}$
Formula weight	818.08
Temperature/K	297.2
Crystal system	monoclinic
Space group	C2/c
a / \AA	21.270(2)
b/ \AA	12.2947(12)
c/ \AA	14.7085(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	97.489(3)
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	3813.5(6)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.425
μ / mm^{-1}	0.710
F(000)	1688.0
Crystal size/mm ${ }^{3}$	$0.3 \times 0.26 \times 0.25$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.89 to 52.19
Index ranges	$-26 \leq \mathrm{h} \leq 26,-15 \leq \mathrm{k} \leq 15,-18 \leq 1 \leq 16$
Reflections collected	27119
Independent reflections	$3775\left[\mathrm{R}_{\text {int }}=0.0618, \mathrm{R}_{\text {sigma }}=0.0342\right]$
Data/restraints/parameters	3775/4/266
Goodness-of-fit on F^{2}	1.053
Final R indexes [I>=2 σ (I]	$\mathrm{R}_{1}=0.0376, \mathrm{wR}_{2}=0.0863$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0541, \mathrm{wR}_{2}=0.0938$

Table S2. Selected bond length (A) and angle (${ }^{\circ}$) of the compound 1.

Bonds	Dist. (\AA)
Zn1-O4 ${ }^{1}$	1.9434(15)
$\mathrm{Zn} 1-\mathrm{O} 4^{2}$	1.9434(15)
Zn1-O1	1.9431(16)
$\mathrm{Zn} 1-\mathrm{O}{ }^{3}$	1.9431(16)
Angle	$\left({ }^{\circ}\right.$)
$\mathrm{O} 4^{1}-\mathrm{Zn} 1-\mathrm{O} 4^{2}$	121.17(10)
$\mathrm{O} 1^{3}-\mathrm{Zn} 1-\mathrm{O} 4^{2}$	92.89(7)
O1-Zn1-O4 ${ }^{1}$	92.89(7)
$\mathrm{Ol}^{3}-\mathrm{Zn} 1-\mathrm{O} 4^{1}$	116.71(8)
O1-Zn1-O4 ${ }^{2}$	116.71(8)
O1-Zn1-O1 ${ }^{3}$	118.81(11)

