Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Insulation board-derived N/O self-doped porous carbon as electrode materials for high-performance symmetric supercapacitor

Yingjie Su[#], Zhenjie Lu[#], Junxia Cheng, Xuefei Zhao, Xingxing Chen^{*}, Lijuan Gao^{*}

School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China

[#] The two authors contributed equally.

* Corresponding authors. E-mail: gaolijuan@ustl.edu.cn, xingchenstar79@163.com (X. X. Chen).

Experimental

In a three-electrode system, the specific capacitance (C, F g⁻¹) obtained from the galvanostatic charging/discharging (GCD) curves was calculated according to the formula:

 $C=(I\Delta t)/(m\Delta V),$

where I, Δt , m and ΔV represent discharge current (A), discharge time (s), electrode mass (g) and discharge voltage (V), respectively [1].

For the symmetrical supercapacitor, the specific capacitance (C_s , F g⁻¹) calculated from the GCD curves was according to formula:

 $C_{\rm s}=(2l\Delta t)/(m\Delta V),$

where I, Δt , m and ΔV represent discharge current (A), discharge time (s), electrode mass (g) and cell-operation discharge voltage (V), respectively [2]. The energy density (*E*, Wh kg⁻¹) and power density (*P*, W kg⁻¹) were respectively calculated with the equations of *E*=0.5*C*_s*V*²/3.6 and *P*=3600*E*/ Δt [3,4].

Figure S1 (a) SEM image of PC-600 and its corresponding elemental mappings of (b) C,

Figure S2 (a) N_2 adsorption-desorption isotherms, (b) and (inset) pore size distribution curves of CC.

Figure S3 The comparison of CV curves of pure Ni-foam and PC-600 loaded on Ni-foam (Scan rate: 5 mV s⁻¹).

Figure S4 (a) CV, (b) GCD, (c) specific capacitance at different current densities and (d) EIS curves of CC.

Figure S5 (a~c) CV curves at different scan rates and GCD curves at different current densities of PC-500, PC-700 and PC-800.

Figure S6 (a) Bode plot,(b)real and (c) imaginary parts of specific capacitance fitted by

EIS.

Table S1 Nitrogen adsorption-desorption measurements at 77 k for CC, PC-500, PC-600,PC-700 and PC-800.

Sample	S _{BET} (m² g⁻¹)	V _{tot} (cm ³ g)	V _{mic} (cm ³ g ⁻¹)	V _{meso} (cm³ g⁻¹)	D _{pore} (nm)
СС	98	0.430	0.289	0.156	1.38
PC-500	145	0.134	0.062	0.091	3.68
PC-600	960	0.413	0.368	0.059	1.72
PC-700	1383	0.605	0.532	0.097	1.74
PC-800	1395	0.648	0.540	0.141	1.86

Table S2 The relative concentrations of nitrogen and oxygen estimated from XPS in PC-500, PC-600, PC-700 and PC-800.

	O 1s				N 1s				
Sample	Total	0-C=0	C=O	С-О-Н	Total	N-O	N-Q	N-5	N-6
	Ο%	%	%	%	N %	%	%	%	%
PC-500	11.43	9.62	78.57	11.81	1.84	20.27	31.28	25.95	22.50
PC-600	12.96	3.43	28.87	67.70	1.61	17.97	39.00	26.88	16.15
PC-700	13.22	10.40	76.01	13.59	0.93	23.61	27.17	26.74	22.48
PC-800	12.05	61.58	31.82	6.60	0.83	21.56	24.55	28.12	25.77

	Specific	Power	Energy			
Sample	Capacitance	Density (W	Density	Stability	Ref.	
	(F g ⁻¹)	kg ⁻¹) (Wh kg ⁻¹)				
DC 000	262.2	500	17 /	100%		
PC-000	202.2	500	17.4	(20000 c)		
QPC-3	254	100	9.5	93%	[5]	
				(10000 c)		
U-3DHPC	284.1	200.7	19.2	86.5%	[6]	
				(10000 c)	[0]	
HPCR-800	48.7	100	6.77	81%	[7]	
				(10000 c)	[/]	
	356.4	300	10.4	92.8%	[8]	
TC-1				(5000 c)		
HPC-4	452.7	140	14.1	90%	[0]	
				(6000 c)	[ອ]	
	410	220.0	22.2	93%	[10]	
vv D- ПРС-700	413	220.9	22.3	(10000 c)		

Table S3 The comparison of electrochemical performance of the supercapacitors usingwaste material-derived porous carbon as the electrodes.

Reference

[1] C. Ma, L.Q. Wu, M. Dirican, H. Cheng, J.J. Li, Y. Song, J.L. Shi, X.W. Zhang, Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors, Appl. Surf. Sci. 537 (2021) 147914.

[2] Y.B. Liu, G.X. Huang, Y.Y. Yuan, Y.H. Yao, Q.R. Liu, B.L. Xing, J.B. Jia, C.X. Zhang, Structural evolution of porous graphitic carbon nanosheets based on quinonyl decomposition for supercapacitor electrodes, Appl. Surf. Sci. 573 (2021) 147824.

[3] J.Q. Cui, J. Yin, J.S. Meng, Y. Liu, M.Y. Liao, T. Wu, M. Dresselhaus, Y.M.
Xie, J.H. Wu, C.Z. Lu, X.C. Zhang, Supermolecule cucurbituril subnanoporous
carbon supercapacitor (SCSCS), Nano Lett. 21 (2021) 2156 - 2164.

[4] Y.Y. Tan, D.L. Wu, T. Wang, P.G. Liu, J. Guo, D.Z. Jia, Facile synthesis of functionalized graphene hydrogel for high performance supercapacitor with high volumetric capacitance and ultralong cycling stability, Appl. Surf. Sci. 455 (2018) 683–695.

[5] Y. Sun, J. J. Xue, S.Y. Dong, Y.D. Zhang, Y.F. An, B. Ding, T.F. Zhang, H. Dou, X.G. Zhang, Biomass-derived porous carbon electrodes for high-performance supercapacitors, J. Mater. Sci. 55, (2020) 5166–5176.

[6] C.D. Ma, J.K. Min, J. Gong, X.G. Liu, X.Y. Mu, X.C. Chen, T. Tang, Transforming polystyrene waste into 3D hierarchically porous carbon for highperformance supercapacitors, 253 (2020) 126775. [7] L. Fang, Y.P. Xie, Y.Y. Wang, Z.W. Zhang, P.F. Liu, N. Cheng, J.F. Liu,
Y.C. Tu, H.B. Zhao, J.J. Zhang, Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application, Appl. Surf. Sci. 464 (2019) 479–487.
[8] Z.R. Huang, C.Y. Qin, J. Wang, L. Cao, Z.W. Ma, Q.H. Yuan, Z.D. Lin, P. Zhang, Research on high-value utilization of carbon derived from tobacco waste in supercapacitors, Materials 14 (2021) 1714–1726.

[9] G.Z. Zhao, Y.J. Li, G. Zhu, J.Y. Shi, T. Lu, L.K. Pan, Waste fruit grain orange-derived 3D hierarchically porous carbon for high-performance all-solid-state supercapacitor, lonics 25 (2019) 3935–3944.

[10] P.F. Yu, Y.R. Liang, H.W. Dong, H. Hu, S.M. Liu, L. Peng, M.T. Zheng, Y. Xiao, Y.L. Liu, Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application, ACS Sustainable Chem. Eng. 6 (2018) 15325–15332.