Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

In-situ microsynthesis of polyaniline: synthesis – structure – conductivity correlation

Anna Vasileva^{1†}, Dmitrii Pankin^{2†}, Vladimir Mikhailovskii³, Ilya Kolesnikov², Ignacio Mínguez-Bacho⁴, Julien Bachmann^{1,4}, Alina Manshina^{1*}.

- ¹ Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- ² Center for Optical and Laser Materials Research, St. Petersburg State University, Uljanovskaya 5, 198504 St. Petersburg, Russia
- ³ Interdisciplinary Resource Center for Nanotechnology, Research Park, Saint-Petersburg State University, Ulyanovskaya 1, Saint-Petersburg 198504, Russia
- ⁴ Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nurnberg, Cauerstr. 3, 91058 Erlangen, Germany.
- [†]These authors contributed equally to the work
- * AM corresponding author a.manshina@spbu.ru

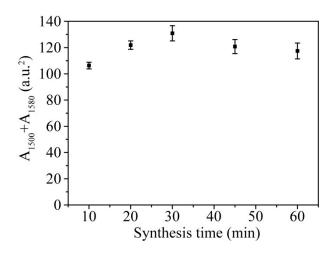


Fig. SI1. Sum of integral area of Q and B peaks obtained after decomposition in dependence on synthesis time.

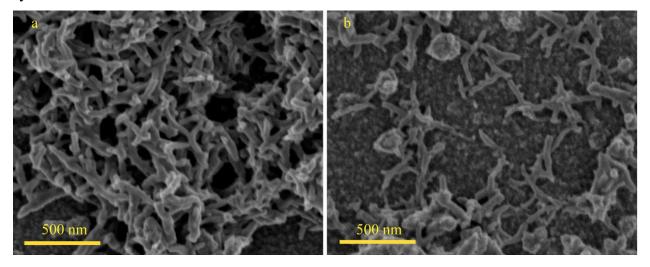


Fig SI2. SEM images of samples synthesized at different times a -30 min, b - 60 min

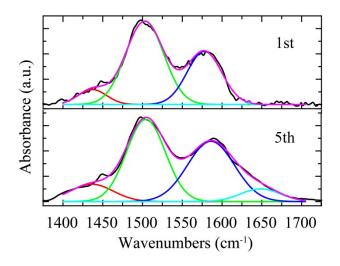


Fig. SI3. Example of peak decomposition in the FTIR spectra in 1375-1725 cm⁻¹ for 1st and 5th synthesis.