Supporting Information for

Dual-channel fluorescent probe for monitoring pH change in

lysosomal during autophagy

Yonghui Huo, Xing Liang, Jun Yan, Ling Huang, Weiying Lin *

Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China

Table of contents

Scheme S1. The synthesis of fluorescent probe BM-HA.	.83
Fig. S1. Absorption spectra of RD and RD + H^+	.S4
Fig. S2. The time-dependent fluorescence spectra	.S4
Fig. S3. pH titration Curves of lg I_{556}/I_{405}	.S4
Fig. S4. Cytotoxicity assays of probe at different concentrations for HL-7702 cells	.85
Fig. S5 Fig. S9. ¹ H NMR, ¹³ C NMR, and HRMS spectra	S9

Scheme S1. Structure and synthetic route of RD

Synthesis of Compound 1

In 100 mL round bottom flask, 456 mg 4-diethylamine ketoic acid (2.0mmol), 0.3565 g 1-(3-Hydroxyphenyl)–piperazine (2.0 mmol) and 2 mL sulphuric acid were added first. The reaction was heated to 90 °C and refluxed for 3 hours. The solvent was dissolved in 100 mL ice water , and 2 mL perchloric acid was added, then collectedred solid precipitated . The crude product was purified by column chromatography on silica gel (CH₂Cl₂:CH₃OH = 10:1) to afford a red solid (784 mg, yield 86.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 7.6 Hz, 1H), 7.66 (t, J = 7.0 Hz, 1H), 7.60 (t, J = 7.3 Hz, 1H), 7.28 (s, 1H), 7.21 (d, J = 7.6 Hz, 1H), 6.71 (d, J = 2.3 Hz, 1H), 6.65 (d, J = 8.8 Hz, 1H), 6.59 (d, J = 9.0 Hz, 1H), 6.46 (s, 1H), 6.36 (d, J = 2.5 Hz, 1H), 3.38 (q, J = 7.1 Hz, 4H), 3.27 - 3.22 (m, 4H), 3.08 - 3.03 (m, 4H), 1.19 (t, J = 7.0 Hz, 6H), 0.94 (dd, J = 13.8, 7.2 Hz, 1H).

Figure S1. The UV-Vis spectra of the probe **RD** with pH 3.2 and 7 in DMSO/ B-R (1/99, v/v) solution

Figure S2. The time courses of reaction of the probe RD (10 μ M) in the presence of pH in B-R solution at room temperature. (a) λ_{ex} 556 nm (b) λ_{ex} 405 nm.

Figure S3. (a) pH titration curves of lg ratios between fluorescence emission of Rhodamine (I_{556} nm) and that of dansyl group (I_{405} nm). (b) The relationship between the value of lg556/lg405 and pH 4.4 - 6.

Figure S4. Viability of HL-7702 cells treated with the various concentrations of probe RD for 24h.

Figure S5. ¹H NMR of compound 1.

Figure S8. ¹³C NMR of the probe RD.

Figure S9. Mass spectrum of the probe RD