Supporting Information

Size-matched polyoxometalate encapsulated in UiO-66(Zr): an extraordinary catalyst with double active sites for highly efficient ultra-deep oxidative desulfurization of fuel oil

Fangyuan He, Heyi Zhang, Xiaonan Li, Jie Yang, Wenqing Ma and Hong Zhang*

Experimental

Preparation of Mo₈

1.25 g $Na_2MoO_4 \cdot 2H_2O$ was dissolved in 3 ml water, adjust the solution pH to 4.5 with HCl (1.0 ml,

6 mol/l), then add 0.80 g (n-C_4H_9)_4NCl, filter out the resulting precipitation, finally wash the

precipitation thoroughly with water, absolute ethyl alcohol, acetone, diethyl ether, respectively.

Characterization

Figure S2. EDS analysis of Mo₈-UiO-66.

Figure S3. TEM images of Mo₈-UiO-66 (a) and element mapping (b).

Figure S4. Nitrogen adsorption-desorption isotherms of UiO-66 and Mo_8 -UiO-66.

Figure S5. Aperture distribution of UiO-66 and Mo₈-UiO-66.

Figure S6. Thermogravimetric analysis of UiO-66 and Mo_8 -UiO-66.

Figure S7. Reaction kinetics of DBT removal, reaction conditions: 60 °C, O/S = 4, m_{cat} = 0.020 g, t = 10

min.

Figure S8. PXRD patterns of Mo_8 -UiO-66 and Mo_8 -UiO-66 after fourth recycle.

Figure S9. FT-IR spectra of Mo_8 -UiO-66 and Mo_8 -UiO-66 after fourth recycle.

Figure S10. GC-MS of fresh model oil phase (a), oil phase after reaction (b), oxidative production after reextraction (c).

Figure S11. EPR spectrum of Mo_8 -UiO-66, H_2O_2 and DMPO.

Table S1. The content of Mo_8 in different conditions (measured by ICP).

Samples	Content of Mo ₈
Mo ₈ -UiO-66	28.05%
Mo ₈ -UiO-66 (after reaction)	27.88%