Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

ESI for

Catalytic epoxidation of β -ionone epoxidation with molecular oxygen on selenium-doped silica

Peizi Li^a, Kuanhong Cao^a, Xiaobi Jing^a, Yonghong Liu^{a,*}, and Lei Yu^{a,*}

^aSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,

Jiangsu 225002, China

Fax: +86 514 87975244; Tel: +86 136 65295901; Emails: <u>yhliu@yzu.edu.cn</u> (Y. Liu); <u>yulei@yzu.edu.cn</u> (L. Yu)

CONTENTS

FT-IR spectra of the materials	.S2
XRD patterns of the materials	.S3
XPS details	.S4
XPS spectrum of Se/SiO ₂ -F on F	
EDX spectrum of Se/SiO ₂ -F	.S5
¹ H NMR data and spectrum of β -ionone epoxide	.S6

FT-IR spectra of the materials

Fig. S1. FT-IR spectra of the materials.

XRD patterns of the materials

Fig. S2. XRD pattern of Se/SiO₂-KF.

Fig. S3. XRD pattern of Se/SiO₂.

Fig. S4. XRD pattern of SiO₂-KF.

XPS details

ESCALAB 250Xi of Thermo Fisher Scientific with mono AI K α (1486.6 eV) was employed. When the neutralization gun was turned on in the whole process, the test beam spot size was 500 μ m under standard mode (CAE). Full spectrum passing energy was 150 eV, with step size at 1.0 eV; Narrow spectrum passing energy was 30 eV, with step size at 0.05 eV. The sample was pre-vacuumized to 2.0×10^{-8} mbar in

the injection chamber and transferred to the analysis chamber of 9.0×10^{-10} mbar step

by step. In the actual test, the vacuum was 3.0×10^{-7} mbar because the neutralization

gun was turned on.

Chemical state	Binding energy Si 2p/eV
Organic Si	102 (References:1)
SiO ₂	103.5 (References:1)

Chemical state	Binding energy Se 3d/eV
Se	55.2 (Ref. 1)
Se ⁴⁺	59.07 (Ref. 2)

References:

1. https://srdata.nist.gov/xps/selEnergyType.aspx

2. S. Zhu, J. Hu, S. Liu. Carbohyd. Polym. 246 (2020) 116545.

XPS spectrum of Se/SiO₂-F on F

Fig. S5. XPS spectrum of Se/SiO₂-F on F.

EDX spectrum of Se/SiO₂-F

Fig. S6. EDX spectrum of Se/SiO₂-F.

¹H NMR data and spectrum of β -ionone epoxide

¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, *J* = 15.7 Hz, 1H), 6.27 (d, *J* = 15.6 Hz, 1H), 2.26 (s, 3H), 1.88 (dq, *J* = 9.9, 7.9 Hz, 1H), 1.74 (dt, *J* = 14.7, 5.3 Hz, 1H), 1.48 – 1.37 (m, 3H), 1.13 (s, 6H), 1.06 (ddd, *J* = 10.9, 5.3, 2.2 Hz, 1H), 0.92 (s, 3H). Known product [Catal. Sci. Technol. 8 (2018) 5017–5023].

