Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information for

Phosphine-substituted diiron complexes Fe₂(µ-Rodt)(CO)_{6-n}(PPh₃)_n

(R = Ph, Me, H and n = 1, 2) featuring desymmetrized oxadithiolate

bridges: Structures, protonation, and electrocatalysis

Xiao-Li Gu,[#] Jian-Rong Li,[#] Bo Jin, Yang Guo, Xing-Bin Jing and Pei-Hua Zhao^{*}

School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China

*Corresponding author. Email: zph2004@nuc.edu.cn (P.-H. Zhao).

[#]The two authors equally contributed to this work.

Contents

Part I. Crystallographic data for complexes 4 and 7-9

p6 Table S1. Details of crystallographic data and structure refinement for 4 and 7-9

Part II. Additional protonation data for complexes 4-6 and 7-9.

- p7 Figure S1. Comparison for FT-IR spectra (2700-1800 cm⁻¹, KBr disk) of the monosubstituted complexes 4 (a), 5 (b), and 6 (c) with 0 (black line) versus 10 (red line) equivalents of strong acid TFA. *Insert:* An enlarged FT-IR spectrum in the region of 2600-2400 cm⁻¹ in Figures S1a-1c.
- *p8* Figure S2. ³¹P{¹H} NMR spectrum of the monosubstituted complex 4 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* The proposed structure of the protonated species [4(µH)]⁺.
- p9 Figure S3. ³¹P{¹H} NMR spectrum of the monosubstituted complex 5 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* The proposed structure of the protonated species [5(µH)]⁺.
- *p10* Figure S4. ³¹P{¹H} NMR spectrum of the monosubstituted complex 6 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* The proposed structure of the protonated species [6(µH)]⁺.
- p11 Figure S5. High-field region ¹H NMR spectrum of the monosubstituted complex 5 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* The proposed structure of the protonated species [5(µH)]⁺.
- p12 Figure S6. High-field region ¹H NMR spectra of the monosubstituted complexes 4 and 6 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h.
- p13 Figure S7. Comparison for FT-IR spectra (2700-1800 cm⁻¹, KBr disk) of the disubstituted complexes 7 (a), 8 (b), and 9 (c) with 0 (black line) versus 10 (red line) equivalents of strong acid TFA. *Insert:* An enlarged FT-IR spectrum in the region of 2600-2400 cm⁻¹ in Figures S7a-7c.

- *p14* Figure S8. High-field region ¹H NMR spectrum of the disubstituted complex 7 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species [7(μH)]⁺.
- *p15* Figure S9. High-field region ¹H NMR spectrum of the disubstituted complex 8 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species [8(µH)]⁺.
- p16 Figure S10. High-field region ¹H NMR spectrum of the disubstituted complex 9 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species [9(µH)]⁺.
- *p17* Figure S11. ³¹P{¹H} NMR spectra of the disubstituted complex 7 (0.015 mmol) with 0 versus 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species $[7(\mu H)]^+$.
- *p18* Figure S12. ³¹P{¹H} NMR spectra of the disubstituted complex 8 (0.015 mmol) with 0 versus 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species $[8(\mu H)]^+$.
- *p19* Figure S13. ³¹P{¹H} NMR spectra of the disubstituted complex 9 (0.015 mmol) with 0 versus
 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species [9(µH)]⁺.
- p20 Figure S14. FT-IR spectra (a-f) recorded for the *in situ* protonations of the mono- and disubstituted complexes 4-6 and 7-9 (0.015 mmol) with 0 versus 10 equivalents of weak acid CH₃CO₂H (HOAc) in 5 mL CH₂Cl₂ at 298 K for 8 h, respectively.

Part III. Electrolysis experiments and TONs calculations of complexes 4-6 and 7-9

- *p21* Scheme S1. Two electrocatalytic proton reduction processes I and II of a representative precursor **4** (for the monosubstituted complexes **4-6**) at $E_{pc1} = -1.76$ V through a proposed ECCE mechanism and at $E_{pc3} = -1.65$ V through a suggested ECEC mechanism in the presence of TFA as a proton source, respectively, wherein the Rodt, CO, and PPh₃ ligands are omitted for clarity.
- *p22* Scheme S2. Two electrocatalytic proton reduction processes I and II of a representative precursor 7 (for the disubstituted complexes 7-9) at $E_{pc3} = -1.55$ V through a proposed

ECEC mechanism and at $E_{pc4} = -1.70$ V through a suggested CEEC mechanism in the presence of TFA as a proton source, respectively, wherein the Rodt, CO, and PPh₃ ligands are omitted for clarity.

- *p23* Scheme S3. Electrocatalytic proton reduction process of two representative precursors 4 (for the monosubstituted complexes 4-6) at $E_{pc2} = -2.17$ V and 7 (for the disubstituted complexes 7-9) at $E_{pc2} = -2.19$ V via a suggested EECC mechanism in the presence of HOAc as a proton source, respectively, wherein the Rodt, CO, and PPh₃ ligands are omitted for clarity.
- *p24* Figure S15. CV curves of 1.0 mM complexes 4-6 (a-c) and 7-9 (e-f) with weak acid HOAc (0-10 mM) in 0.1 M *n*-Bu₄NPF₆/MeCN at a scan rate of 0.05 V s⁻¹. *Inserts* in (a-c) and (e-f): Plots of catalytic currents (i_{cat} , μ A) of 4-6 and 7-9 with increasing acid concentrations ([HOAc], mM), respectively. All potentials are versus the ferrocene/ferrocenium (Fc^{0/+}) couple.
- p25 Figure S16. Controlled-potential electrolysis experiments (i-t curves) of complexes 4-6 (0.5 mM, a-c) and 7-9 (0.5 mM, d-f) in 5 mM strong acid TFA/MeCN solution for 5 h at 2.30 V vs. Ag/AgNO₃.
- p26 Figure S17. Controlled-potential electrolysis experiments (i-t curves) of complexes 4-6 (0.5 mM, a-c) and 7-9 (0.5 mM, d-f) in 5 mM weak acid HOAc/MeCN solution for 5 h at 2.30 V vs. Ag/AgNO₃.
- p27 Figure S18. Q-t curves and TONs calculations of complexes 4-6 (0.5 mM, a-c) and 7-9 (0.5 mM, d-f) in 5 mM strong acid TFA/MeCN solution for 5 h at -2.30 V vs. Ag/AgNO₃, respectively.
- p28 Figure S19. Q-t curves and TONs calculations of complexes 4-6 (0.5 mM, a-c) and 7-9 (0.5 mM, d-f) in 5 mM weak acid HOAc/MeCN solution for 5 h at -2.30 V vs. Ag/AgNO₃, respectively.

Part IV. The IR and NMR spectra for complexes 1, 2, 4-6 and 7-9

- *p29* Figure S20. FT-IR spectrum of $Fe_2(\mu$ -Phodt)(CO)₆ (1) in KBr.
- p30 Figure S21. ¹H NMR spectrum of Fe₂(μ -Phodt)(CO)₆ (1) in CDCl₃ (600 MHz, TMS).
- *p31* Figure S22. FT-IR spectrum of $Fe_2(\mu$ -Meodt)(CO)₆ (2) in KBr.
- *P32* Figure S23. ¹H NMR spectrum of $Fe_2(\mu$ -Meodt)(CO)₆ (2) in CDCl₃ (600 MHz, TMS).

- *p33* Figure S24. FT-IR spectrum of $Fe_2(\mu$ -odt)(CO)₆ (3) in KBr.
- *p34* Figure S25. FT-IR spectrum of $Fe_2(\mu$ -Phodt)(CO)₅(PPh₃) (4) in KBr.
- *p35* Figure S26. ¹H NMR spectrum of $Fe_2(\mu$ -Phodt)(CO)₅(PPh₃) (4) in CDCl₃ (600 MHz, TMS).
- *p36* Figure S27. ³¹P{¹H} NMR spectrum of Fe₂(μ-Phodt)(CO)₅(PPh₃) (4) in CDCl₃ (243 MHz, 85% H₃PO₄).
- *p37* Figure S28. FT-IR spectrum of $Fe_2(\mu$ -Meodt)(CO)₅(PPh₃) (5) in KBr.
- *p38* Figure S29. ¹H NMR spectrum of $Fe_2(\mu$ -Meodt)(CO)₅(PPh₃) (5) in CDCl₃ (600 MHz, TMS).
- *p39* Figure S30. ³¹P{¹H} NMR spectrum of $Fe_2(\mu$ -Meodt)(CO)₅(PPh₃) (5) in CDCl₃ (243 MHz, 85% H₃PO₄).
- *p40* Figure S31. FT-IR spectrum of $Fe_2(\mu$ -odt)(CO)₅(PPh₃) (6) in KBr.
- *p41* Figure S32. ¹H NMR spectrum of $Fe_2(\mu$ -odt)(CO)₅(PPh₃) (6) in CDCl₃ (600 MHz, TMS).
- *p42* Figure S33. ³¹P{¹H} NMR spectrum of $Fe_2(\mu$ -odt)(CO)₅(PPh₃) (6) in CDCl₃ (243 MHz, 85% H₃PO₄).
- *p43* Figure S34. FT-IR spectrum of $Fe_2(\mu$ -Phodt)(CO)₄(PPh₃)₂ (7) in KBr.
- *p44* Figure S35. ¹H NMR spectrum of $Fe_2(\mu$ -Phodt)(CO)₄(PPh₃)₂ (7) in CDCl₃ (600 MHz, TMS).
- *p45* Figure S36. ³¹P{¹H} NMR spectrum of $Fe_2(\mu$ -Phodt)(CO)₄(PPh₃)₂ (7) in CDCl₃ (243 MHz, 85% H₃PO₄).
- *p46* Figure S37. FT-IR spectrum of $Fe_2(\mu$ -Meodt)(CO)₄(PPh₃)₂ (8) in KBr.
- p47 Figure S38. ¹H NMR spectrum of Fe₂(μ -Meodt)(CO)₄(PPh₃)₂ (8) in CDCl₃ (600 MHz, TMS).
- *p48* Figure S39. ³¹P{¹H} NMR spectrum of Fe₂(μ-Meodt)(CO)₄(PPh₃)₂ (8) in CDCl₃ (243 MHz, 85% H₃PO₄).
- *p49* Figure S40. FT-IR spectrum of $Fe_2(\mu$ -odt)(CO)₄(PPh₃)₂ (9) in KBr.
- *p50* Figure S41. ¹H NMR spectrum of $Fe_2(\mu$ -odt)(CO)₄(PPh₃)₂ (9) in CDCl₃ (600 MHz, TMS).
- *p51* Figure S42. ³¹P{¹H} NMR spectrum of $Fe_2(\mu$ -odt)(CO)₄(PPh₃)₂ (9) in CDCl₃ (243 MHz, 85% H₃PO₄).

Table S1. Details of crystallographic data and structure refinement for 4 and 7-9				
Complex	4	7	8	9
CCDC number	2083414	2083415	2083416	2083417
Empirical formula	$C_{31}H_{23}Fe_2O_6PS_2$	$C_{48}H_{38}Fe_2O_5P_2S_2$	$C_{43}H_{36}Fe_2O_5P_2S_2$	$C_{42}H_{34}Fe_2O_5P_2S_2$
Formula weight	698.28	932.54	870.532	856.45
Temperature (K)	150(2)	150(2)	150(2)	150(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	monoclinic	triclinic	triclinic
Space group	P-1	$P2_1/c$	P-1	P-1
<i>a</i> (Å)	9.0226(5)	14.3643(5)	9.2488(6)	9.2009(6)
<i>b</i> (Å)	10.2799(6)	18.3822(7)	13.4812(8)	13.4863(10)
<i>c</i> (Å)	17.7088(11)	17.9936(6)	17.0713(11)	16.7738(12)
α (°)	96.927(3)	90	77.746(3)	77.342(4)
β (°)	92.816(3)	110.0960(10)	89.450(3)	89.522(4)
γ (°)	115.474(2)	90	70.192(3)	70.674(4)
$V(Å^3)$	1462.63(15)	4461.9(3)	1952.5(2)	1911.7(2)
Ζ	2	4	2	2
D_{calc} (g cm ⁻³)	1.586	1.388	1.481	1.488
μ (mm ⁻¹)	1.233	0.861	0.978	0.997
<i>F</i> (000)	712.0	1920.0	898.7	880.0
Crystal size (mm)	0.26~0.18~0.14	0.32×0.22×0.14	0.22×0.18×0.14	0.34 imes 0.28 imes
	0.20^0.18^0.14		0.22^0.18^0.14	0.18
$ heta_{\min}, heta_{\max}(^\circ)$	4.444, 52.856	4.822,52.766	4.52,52.92	4.56, 52.04
Reflections	26250/6000	76335/9129	32807/7955	42182/7545
collected/unique				
$R_{\rm int}$	0.0524	0.0415	0.0492	0.1167
hkl Range	$-11 \le h \le 11$	-17≤ h ≤17	-11≤h≤11	-11≤h≤11
	$-12 \le k \le 12$	$-22 \le k \le 1622$	$-16 \le k \le 16$	$-16 \le k \le 16$
	$-22 \le l \le 22$	$-22 \le l \le 21$	$-21 \le l \le 21$	$-20 \le l \le 20$
Completeness to	99.7	99.9	98.7	100.0
θ_{\max} (%)	(000/0/270	0120/0/522	7055/0/400	7545101470
Data/restraints/para	6000/0/379	9129/0/532	/955/0/498	/545/0/4/8
Goodness-of-fit	1.013	1.074	1 035	1 1/1
(GOF) on F^2	1.015	1.074	1.055	1.171
$\frac{1}{WR_2} \left[I > 2\sigma(I) \right]$	0.0382/0.0901	0.0742/0.2205	0.0478/0.1271	0.0717/0.1139
R_1/wR_2 (all data)	0.0608/0.1008	0.0909/0.2419	0.0744/0.1462	0.1173/0.1342
Largest difference	0.35/-0.31	3.53/-0.71	1.16/-0.74	0.87/-0.49
peak/ hole (e A ⁻³)		·		-

Part I. Crystallographic data for complexes 4 and 7-9

Figure S1. Comparison for FT-IR spectra (2700-1800 cm⁻¹, KBr disk) of the monosubstituted complexes 4 (a), 5 (b), and 6 (c) with 0 (black line) versus 10 (red line) equivalents of strong acid TFA. *Insert:* An enlarged FT-IR spectrum in the region of 2600-2400 cm⁻¹ in Figures S1a-1c.

Figure S2. ³¹P{¹H} NMR spectrum of the monosubstituted complex 4 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* the proposed structure of the protonated species [4(µH)]⁺.

Figure S3. ³¹P{¹H} NMR spectrum of the monosubstituted complex 5 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* the proposed structure of the protonated species [5(µH)]⁺.

Figure S4. ³¹P{¹H} NMR spectrum of the monosubstituted complex 6 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* the proposed structure of the protonated species [6(µH)]⁺.

Figure S5. High-field region ¹H NMR spectrum of the monosubstituted complex 5 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h. *Insert:* the proposed structure of the protonated species [5(µH)]⁺.

Figure S6. High-field region ¹H NMR spectra of the monosubstituted complexes 4 and 6 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 4 h.

Figure S7. Comparison for FT-IR spectra (2700-1800 cm⁻¹, KBr disk) of the disubstituted complexes 7 (a), 8 (b), and 9 (c) with 0 (black line) versus 10 (red line) equivalents of strong acid TFA. *Insert:* An enlarged FT-IR spectrum in the region of 2600-2400 cm⁻¹ in Figures S7a-7c.

Figure S8. High-field region ¹H NMR spectrum of the disubstituted complex 7 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species $[7(\mu H)]^+$.

Figure S9. High-field region ¹H NMR spectrum of the disubstituted complex 8 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species $[8(\mu H)]^+$.

Figure S10. High-field region ¹H NMR spectrum of the disubstituted complex 9 (0.015 mmol) with 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species $[9(\mu H)]^+$.

Figure S11. ³¹P{¹H} NMR spectra of the disubstituted complex 7 (0.015 mmol) with 0 versus 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species [7(μH)]⁺.

Figure S12. ³¹P{¹H} NMR spectra of the disubstituted complex 8 (0.015 mmol) with 0 versus 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species [8(μH)]⁺.

Figure S13. ³¹P{¹H} NMR spectra of the disubstituted complex 9 (0.015 mmol) with 0 versus 10 equivalents of strong acid CF₃CO₂H (TFA) in CDCl₃ (0.5 mL) at 298 K for 3 h. *Insert*: The proposed isomeric structures of the protonated species [9(μH)]⁺.

Figure S14. FT-IR spectra (a-f) recorded for the *in situ* protonations of the mono- and disubstituted complexes 4-6 and 7-9 (0.015 mmol) with 0 (black line) versus 10 (red line) equivalents of weak acid CH₃CO₂H (HOAc) in 5 mL CH₂Cl₂ at 298 K for 8 h, respectively.

Part III. Electrolysis experiments and TONs calculations of complexes 4-6 and 7-9

Scheme S1. Two electrocatalytic proton reduction processes I and II of a representative precursor 4 (for the monosubstituted complexes 4-6) at $E_{pc1} = -1.76$ V through a proposed ECCE mechanism and at $E_{pc3} = -1.65$ V through a suggested ECEC mechanism in the presence of TFA as a proton source, respectively, wherein the Rodt, CO, and PPh₃ ligands are omitted for clarity.

Scheme S2. Two electrocatalytic proton reduction processes I and II of a representative precursor 7 (for the disubstituted complexes 7-9) at $E_{pc3} = -1.55$ V through a proposed ECEC mechanism and at $E_{pc4} = -1.70$ V through a suggested CEEC mechanism in the presence of TFA as a proton source, respectively, wherein the Rodt, CO, and PPh₃ ligands are omitted for clarity.

Scheme S3. Electrocatalytic proton reduction process of two representative precursors 4 (for the monosubstituted complexes 4-6) at $E_{pc2} = -2.17$ V and 7 (for the disubstituted complexes 7-9) at $E_{pc2} = -2.19$ V via a suggested EECC mechanism in the presence of HOAc as a proton source, respectively, wherein the Rodt, CO, and PPh₃ ligands are omitted for clarity.

Figure S15. CV curves of 1.0 mM complexes **4-6** (a-c) and **7-9** (e-f) with weak acid HOAc (0–10 mM) in 0.1 M *n*-Bu₄NPF₆/MeCN at a scan rate of 0.05 V s⁻¹. *Inserts* in (a-c) and (e-f): Plots of catalytic currents (i_{cat} , μ A) of **4-6** and **7-9** with increasing acid concentrations ([HOAc], mM), respectively. All potentials are versus the ferrocene/ferrocenium (Fc^{0/+}) couple.

Figure S16. Controlled-potential electrolysis experiments (i-t curves) of complexes **4-6** (0.5 mM, a-c) and **7-9** (0.5 mM, d-f) in 5 mM strong acid TFA/MeCN solution for 5 h at -2.30

V vs. Ag/AgNO₃.

Figure S17. Controlled-potential electrolysis experiments (i-t curves) of complexes 4-6 (0.5 mM, a-c) and 7-9 (0.5 mM, d-f) in 5 mM weak acid HOAc/MeCN solution for 5 h at -2.30 V vs. Ag/AgNO₃.

Figure S18. Q-t curves and TONs calculations of complexes 4-6 (0.5 mM, a-c) and 7-9 (0.5 mM, d-f) in 5 mM strong acid TFA/MeCN solution for 5 h at -2.30 V vs. Ag/AgNO₃, respectively.

TON calculation for complex 4 as a representive example [1,2]:

- (1) From the CPE experiment shown in Fig. S15a, the total charges passed for complex 4 are equal to 3.70 C with 5 hours. Thus, we converted this charge into the moles of transfer electron on the GCE electrode (division by faraday constant F), *i.e.*, n(e⁻) = Q/F (F = 96500 C·mol⁻¹). According to the reaction 2H⁺ +2e⁻ = H₂, the moles of H₂ produced is estimated from the moles of transfer electron on the GCE electrode (division by 2), *i.e.*, n(H₂) = n(e⁻)/2 = Q/(2xF). Thus, n(H₂) = 3.70 / (2x96500) = 1.92x10⁻⁵ mol = 19.2 µmol for complex 4.
- (2) According to the equations: TON = $n(H_2)/n(\text{catalyst})$, TON = 19.2 μ mol / 5 μ mol = 3.84 for complex 4

References:

- [1] A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin and M. Fontecave, From hydrogenases to noble metal–free catalytic nanomaterials for H₂ production and uptake, *Science*, 2009, **326**, 1384–1387.
- [2] S. Dey, A. Rana, S. G. Dey and A. Dey, Electrochemical hydrogen Production in acidic water by an azadithiolate bridged synthetic hydrogenese mimic: Role of aqueous solvation in lowering overpotential, ACS Catal., 2013, 3, 429–436.

Figure S19. Q-t curves and TONs calculations of complexes 4-6 (0.5 mM, a-c) and 7-9 (0.5 mM, d-f) in 5 mM weak acid HOAc/MeCN solution for 5 h at -2.30 V vs. Ag/AgNO₃, respectively.

Figure S20. FT-IR spectrum of $Fe_2(\mu$ -Phodt)(CO)₆ (1) in KBr.

Figure S21. ¹H NMR spectrum of $Fe_2(\mu$ -Phodt)(CO)₆ (1) in CDCl₃ (600 MHz, TMS).

Figure S22. FT-IR spectrum of $Fe_2(\mu$ -Meodt)(CO)₆ (2) in KBr.

Figure S23. ¹H NMR spectrum of $Fe_2(\mu$ -Meodt)(CO)₆ (2) in CDCl₃ (600 MHz, TMS).

Figure S24. FT-IR spectrum of $Fe_2(\mu$ -odt)(CO)₆ (3) in KBr.

Figure S25. FT-IR spectrum of Fe₂(µ-Phodt)(CO)₅(PPh₃) (4) in KBr.

Figure S26. ¹H NMR spectrum of Fe₂(µ-Phodt)(CO)₅(PPh₃) (4) in CDCl₃ (600 MHz, TMS).

Figure S27. ³¹P{¹H} NMR spectrum of Fe₂(μ-Phodt)(CO)₅(PPh₃) (4) in CDCl₃ (243 MHz, 85% H₃PO₄).

Figure S28. FT-IR spectrum of $Fe_2(\mu$ -Meodt)(CO)₅(PPh₃) (5) in KBr.

Figure S29. ¹H NMR spectrum of $Fe_2(\mu$ -Meodt)(CO)₅(PPh₃) (5) in CDCl₃ (600 MHz, TMS).

Figure S30. ³¹P{¹H} NMR spectrum of Fe₂(μ -Meodt)(CO)₅(PPh₃) (5) in CDCl₃ (243 MHz, 85% H₃PO₄).

Figure S31. FT-IR spectrum of Fe₂(µ-odt)(CO)₅(PPh₃) (6) in KBr.

Figure S32. ¹H NMR spectrum of Fe₂(µ-odt)(CO)₅(PPh₃) (6) in CDCl₃ (600 MHz, TMS).

Figure S33. ³¹P{¹H} NMR spectrum of Fe₂(µ-odt)(CO)₅(PPh₃) (6) in CDCl₃ (243 MHz, 85% H₃PO₄).

Figure S34. FT-IR spectrum of $Fe_2(\mu$ -Phodt)(CO)₄(PPh₃)₂ (7) in KBr.

Figure S35. ¹H NMR spectrum of Fe₂(µ-Phodt)(CO)₄(PPh₃)₂ (7) in CDCl₃ (600 MHz, TMS)

Figure S36. ³¹P{¹H} NMR spectrum of $Fe_2(\mu$ -Phodt)(CO)₄(PPh₃)₂ (7) in CDCl₃ (243 MHz, 85% H₃PO₄).

Figure S37. FT-IR spectrum of Fe₂(μ -Meodt)(CO)₄(PPh₃)₂ (8) in KBr.

Figure S38. ¹H NMR spectrum of Fe₂(*µ*-Meodt)(CO)₄(PPh₃)₂ (8) in CDCl₃ (600 MHz, TMS).

Figure S39. ³¹P{¹H} NMR spectrum of Fe₂(µ-Meodt)(CO)₄(PPh₃)₂ (8) in CDCl₃ (243 MHz, 85%

H₃PO₄).

Figure S40. FT-IR spectrum of $Fe_2(\mu$ -odt)(CO)₄(PPh₃)₂ (9) in KBr.

-2.833

Figure S41. ¹H NMR spectrum of $Fe_2(\mu$ -odt)(CO)₄(PPh₃)₂ (9) in CDCl₃ (600 MHz, TMS).

Figure S42. ³¹P{¹H} NMR spectrum of $Fe_2(\mu$ -odt)(CO)₄(PPh₃)₂ (9) in CDCl₃ (243 MHz, 85% H₃PO₄).