Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Fe-MIL-101 modified by isatin-Schiff-base-Co: A heterogeneous catalyst for the C-C, C-O, C-N, and C-P cross coupling reactions

Majid Rouzifar,^a Sara Sobhani,*^a Alireza Farokhi Lashidani^a and José Miguel Sansano^b

General information

FT-IR spectra were recorded by a JASCO FT-IR 460 plus spectrophotometer with a 400-4000 cm⁻¹ range using neat or KBr dispersed samples at room temperature. Thermogravimetric analysis (TGA) was performed using a Shimadzu thermogravimetric analyzer (TG-50) submitting the samples to a heating rate of 10 °C.min⁻¹ under atmospheric air. The surface area, pore volume and pore size distribution of the support and the catalyst were determined by N₂ adsorption desorption using BELSORP mini II instrument. TEM analyses was performed with a TEM microscope (Philips CM30). The ¹H NMR spectra were recorded in a Brucker Advance 300 and 400 MHz spectrometers using CDCl₃ and DMSO-d₆ and solvents containing tetramethylsilane as the internal standard. The coupling constants are given in Hz.

^{a.} Address: Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran, email: <u>ssobhani@birjand.ac.ir</u>, sobhanisara@yahoo.com.

^{b.} Departamento de Qu'imica Org'anica, Facultad de Ciencias, Centro de Innovaci'on en Qu'imica Avanzada (ORFEO-CINQA) and Instituto de S'intesis Org'anica (ISO), Universidad de Alicante, Apdo. 99, 03080-Alicante, Spain.

Table of contents

Figure S1. FT-IR spectra of (a) Fe-MIL-101-NH₂, (b) Fe-MIL-101-isatin-Schiff base and (c) Fe-MIL-101-isatin-Schiff-base-Co

Figure S2. N_2 adsorption-desorption of (a) Fe-MIL-101-NH₂ and (b) Fe-MIL-101-isatin-Schiffbase-Co

Figure S3. TGA curves of (a) Fe-MIL-101-NH₂ and (b) Fe-MIL-101-isatin-Schiff-base-Co

Figure S4. Ullmann-type reaction between iodobenzene and phenol using Fe-MIL-101-isatin-Schiff-base-Co as catalyst in DMF: (a) normal reaction, (b) using a hot filtration protocol and (c) employing a poison for the catalyst

Figure S5. Reusability of the Fe-MIL-101-isatin-Schiff-base-Co during the Ullmann-type coupling reaction of iodobenzene with phenol in

Figure S6. (a) FT-IR and (b) TEM image of the Fe-MIL-101-isatin-Schiff-base-Co after five times reuse in the Ullmann-type coupling reaction of iodobenzene with phenol in 4 h

Figure S7. Reusability of the Fe-MIL-101-isatin-Schiff-base-Co in Buchwald-Hartwig (4.5 h), Hirao (6 h), Hiyama (1 h) and Mizoroki-Heck (2 h) reactions

Figure S8. ¹H NMR and ¹³C NMR spectra of oxydibenzene

Figure S9.¹H NMR and ¹³C NMR spectra of 1-methoxy-4-phenoxybenzene

Figure S10. ¹H NMR and ¹³C NMR spectra of 1-nitro-4-phenoxybenzene

Figure S11. ¹H NMR and ¹³C NMR spectra of 2-(*tert*-butyl)-4-methyl-1-(4-nitrophenoxy) benzene

Figure S12. ¹H NMR and ¹³C NMR spectra of 4-(4-nitrophenoxy) benzaldehyde

Figure S13. ¹H NMR and ¹³C NMR spectra of 1-(4-nitrophenoxy) naphthalene

Figure S14. ¹H NMR and ¹³C NMR spectra of diphenylamine

Figure S15. ¹H NMR and ¹³C NMR spectra of 4-chloro-N-(4-methoxyphenyl) aniline

Figure S16.¹H NMR and ¹³C NMR spectra of 2-aminodiphenylamine

Figure S17. ¹H NMR and ¹³C NMR spectra of 4-sulfodiphenylamine

Figure S18. ¹H NMR and ¹³C NMR spectra of 1-(4-nitrophenyl)-1H-pyrazole

Figure S19. ¹H NMR and ¹³C NMR spectra of 1-(4-Nitrophenyl)-1H-imidazole Figure S20.¹H NMR and ¹³C NMR spectra of 1,4-bis(4-nitrophenyl) piperazine Figure S21. ¹H NMR and ¹³C NMR spectra of diethylphenylphosphonate Figure S22. ¹H NMR and ¹³C NMR spectra of diethyl 4-chlorophenylphosphonat Figure S23. ¹H NMR and ¹³C NMR spectra of diethyl 4-iodophenylphosphonate Figure S24.¹H NMR and ¹³C NMR spectra of diethyl 4-methoxyphenylphosphonate Figure S25. ¹H NMR and ¹³C NMR spectra of diethyl (4-nitrophenyl) phosphonate Figure S26. ¹H NMR and ¹³C NMR spectra of diethyl 4-bromophenylphosphonate Figure S27. ¹H NMR and ¹³C NMR spectra of diethyl 4-tolylphosphonate Figure S28. ¹H NMR and ¹³C NMR spectra of tetraethylphenylbis (phosphonate) Figure S29. ¹H NMR and ¹³C NMR spectra of biphenyl Figure S30. ¹H NMR and ¹³C NMR spectra of 4-methoxybiphenyl Figure S31. ¹H NMR and ¹³C NMR spectra of 4-chlorobiphenyl Figure S32. ¹H NMR and ¹³C NMR spectra of 4-nitrobiphenyl Figure S33. ¹H NMR and ¹³C NMR spectra of 4-cyanobiphenyl Figure S34. ¹H NMR and ¹³C NMR spectra of 4-iodo-1, 1'-biphenyl Figure S35. ¹H NMR and ¹³C NMR spectra of (E)-*n*-butyl cinnamate Figure S36. ¹H NMR and ¹³C NMR spectra of (E)-methyl cinnamate Figure S37. ¹H NMR and ¹³C NMR spectra of (*E*)-ethyl cinnamate Figure S38. ¹H NMR and ¹³C NMR spectra of (*E*)-methyl 2-methyl-3-phenylacrylate Figure S39. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-methoxyphenyl) acrylate Figure S40. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-chlorophenyl) acrylate Figure S41. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-nitrophenyl) acrylate Figure S42. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-cyanophenyl) acrylate Figure S43. ¹H NMR and ¹³C NMR spectra of (E)-1,2-diphenylethene Figure S44. ¹H NMR and ¹³C NMR spectra of (*E*)-1-methoxy-4-styrylbenzene

Figure S45. ¹H NMR and ¹³C NMR spectra of (*E*)-1-nitro-4-styrylbenzene

Figure S1. FT-IR spectra of (a) Fe-MIL-101-NH₂, (b) Fe-MIL-101-isatin-Schiff base and (c) Fe-MIL-101-isatin-Schiff-base-Co.

Figure S2. N_2 adsorption-desorption of (a) Fe-MIL-101-NH₂ and (b) Fe-MIL-101-isatin-Schiffbase-Co

Figure S3. TGA curves of (a) Fe-MIL-101-NH₂ and (b) Fe-MIL-101-isatin-Schiff-base-Co.

Figure S4. Ullmann-type reaction between iodobenzene and phenol using Fe-MIL-101-isatin-Schiff-base-Co as catalyst in DMF: (a) normal reaction, (b) using a hot filtration protocol and (c) employing a poison for the catalyst.

Figure S5. Reusability of the Fe-MIL-101-isatin-Schiff-base-Co during the Ullmann-type coupling reaction of iodobenzene with phenol in 4 h.

Figure S6. (a) FT-IR and (b) TEM image of the Fe-MIL-101-isatin-Schiff-base-Co after five times reuse in the Ullmann-type coupling reaction of iodobenzene with phenol in 4 h.

Figure S7. Reusability of the Fe-MIL-101-isatin-Schiff-base-Co in Buchwald-Hartwig (4.5 h), Hirao (6 h), Hiyama (1 h) and Mizoroki-Heck (2 h) reactions.

¹H NMR (300 MHz, CDCl₃): δ 7.34-7.39 (m, 4 H), 7.13 (t, 2 H, *J* = 7.2 Hz), 7.04 (d, 4 H, *J* = 7.8 Hz) ppm, ¹³C NMR (75 MHz, CDCl₃), δ 157.4, 129.8, 123.4, 118.9 ppm (Table 1, entries 1, 3, 8 and 12).

Figure S9.¹H NMR and ¹³C NMR spectra of 1-methoxy-4-phenoxybenzene

¹H NMR (300 MHz, CDCl₃): δ 7.29-7.33 (m, 2 H), 7.04-7.10 (m, 1 H), 6.90-6.94 (m, 2 H), 6.96-7.01 (m, 4 H), 3.84 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃), δ 158.4, 155.9, 150.1, 129.6, 122.4, 120.8, 117.5, 114.8, 55.6 ppm (Table 1, entries 2 and 4).

Figure S10. ¹H NMR and ¹³C NMR spectra of 1-nitro-4-phenoxybenzene

¹H NMR (CDCl₃, 300 MHz,): δ 8.23 (d, 2 H, J = 9 Hz), 7.47 (t, 2 H, J = 7 .8 Hz), 7.29 (t, 1 H, J = 7.5 Hz), 7.13 (d, 2 H, J = 7.5 Hz), 7.05 (d, 2 H, J = 9 Hz) ppm. ¹³C NMR (75 MHz, CDCl₃), δ 163.4, 154.7, 142.6, 130.3, 125.9, 125.4, 120.5, 117.1 ppm (Table 1, entries 5 and 9).

Figure S11. ¹H NMR and ¹³C NMR spectra of 2-(*tert*-butyl)-4-methyl-1-(4-nitrophenoxy) benzene

¹H NMR (CDCl₃, 300 MHz,): δ 8.24 (d, 2 H, *J* = 9.3 Hz), 7.28-7.29 (m, 1 H), 7.02-708 (m, 3 H), 6.82 (d, 1 H, *J* = 7.5 Hz), 2.40 (s, 3 H,), 1.38 (s, 9 H) ppm. ¹³C NMR (75 MHz, CDCl₃), δ 163.8, 151.2, 142.3, 141.5, 134.8, 128.5, 128.0, 125.9, 121.6, 117.0, 34.6, 30.3, 21.1 ppm (Table 1, entries 7 and 11).

Figure S12. ¹H NMR and ¹³C NMR spectra of 4-(4-nitrophenoxy) benzaldehyde

¹H NMR (CDCl₃, 300 MHz): δ 10.02 (s, 1 H), 8.30 (d, 2 H, *J* = 9.3 Hz), 7.90 (d, 2 H, *J* = 8.7 Hz), 7.23 (d, 2 H, *J* = 8.4 Hz), 7.17 (d, 2 H, *J* = 9.3 Hz) ppm. ¹³C NMR (75 MHz, CDCl₃), δ 190.5, 161.3, 160.4, 143.8, 133.0, 132.1, 126.1, 119.7, 118.8 ppm (Table 1, entries 6 and 10).

Figure S13. ¹H NMR and ¹³C NMR spectra of 1-(4-nitrophenoxy) naphthalene ¹H NMR (CDCl₃, 300 MHz): δ 8.24 (d, 2 H, *J* = 9.3 Hz), 7.90 (d, 2 H, *J* = 9.3 Hz), 7.82 (d, 1 H, *J* = 8.1 Hz), 7.20-7.60 (m, 5 H), 7.06 (d, 1 H, *J* = 9.3 Hz) ppm, ¹³C NMR (75 MHz, CDCl₃), δ 163.98, 150.39, 142.66, 135.2, 128.2, 127.0, 126.8, 126.7, 126.0, 125.8, 125.8, 121.5, 116.7, 116.6 ppm (Scheme 3).

Figure S14. ¹H NMR and ¹³C NMR spectra of diphenylamine

¹H NMR (300 MHz, CDCl₃): δ 7.33 (t, 4 H, J = 9.6 Hz), 7.15 (d, 4 H, J = 10 Hz), 6.99 (d, 2 H, J = 9.6 Hz), 5.75 (s, 1 H), ppm, ¹³C NMR (75 MHz, CDCl₃), δ 143.4, 129.6, 121.2, 118.1 ppm (Table 2, entries 1, 5, 9 and 12).

Figure S15. ¹H NMR and ¹³C NMR spectra of 4-chloro-N-(4-methoxyphenyl) aniline

¹H NMR (300 MHz, CDCl₃): δ 7.20 (d, 2 H, J = 11.6 Hz), 7.11 (d, 2 H, J = 12 Hz), 6.82-6.93 (dd, 4 H, J = 12 Hz, J = 11.6 Hz), 5.50 (s, 1 H), 3.84 (s, 3 H) ppm, ¹³C NMR (75 MHz, CDCl₃), δ 153.8, 143.0, 131.9, 129.0, 124.4, 121.6, 118.1, 114.7, 54.3 ppm (Table 2, entries 2 and 6).

Figure S16.¹H NMR and ¹³C NMR spectra of 2-aminodiphenylamine

¹H NMR (300 MHz, DMSO): δ 7.23-7.29 (m, 2 H), 7.18 (dd, 1 H, *J* = 10.4 Hz), 7.07 (t, 1 H, *J* = 10.4 Hz), 6.86 (t, 3 H, *J* = 11.2 Hz), 6.80 (d, 2 H, *J* = 10.4 Hz), 5.22 (s, 1 H), 3.67 (s, 2 H) ppm, ¹³C NMR (75 MHz, CDCl₃), δ 145.4, 142.0, 129.4, 128.6, 125.8, 124.9, 119.3, 119.2, 116.2, 115.2 ppm (Table 2. entries 3, 7 and 10).

Figure S17. ¹H NMR and ¹³C NMR spectra of 4-sulfodiphenylamine

¹H NMR (300 MHz, CDCl₃): δ 8.31 (s, 1 H), 7.51 (d, 2 H, *J* = 11.2 Hz), 7.26 (t, 2 H, *J* = 10.0 Hz), 7.12 (d, 2 H, *J* = 10.0 Hz), 7.02 (d, 2 H, *J* = 11.6 Hz), 6.86 (t, 1 H, *J* = 9.6 Hz) ppm, ¹³C NMR (75 MHz, CDCl₃), δ 144.1, 143.4, 138.3, 129.2, 127.1, 120.8, 117.2, 115.1 ppm (Table 2, entries 4, 8 and 11).

Figure S18. ¹H NMR and ¹³C NMR spectra of 1-(4-nitrophenyl)-1H-pyrazole ¹H NMR (300 MHz, DMSO-d₆): δ 8.74-8.84 (m, 1H), 8.37-8.40 (m, 2H), 8.15 (m, 2H), 7.90 (s, 1H), 6.68 (t, *J* = 2.1 Hz, 1H) ppm, ¹³C NMR (75 MHz, DMSO-d₆): δ 145.41, 144.42, 142.81, 127.12, 125.42, 118.60, 109.41 ppm (Table 3).

Figure S19. ¹H NMR and ¹³C NMR spectra of 1-(4-Nitrophenyl)-1H-imidazole ¹ H NMR (300 MHz, DMSO-d₆): δ 8.49 (s, 1H), 8.30-8.35 (m, 2H), 7.93-7.98 (m, 3H), 7.19 (s, 1H) ppm, ¹³C NMR (75 MHz, DMSO-d₆): δ 145.6, 142.1, 136.5, 131.2, 125.9, 120.7, 118.3 ppm (Table 3).

Figure S20.¹H NMR and ¹³C NMR spectra of 1,4-bis(4-nitrophenyl) piperazine ¹H NMR (300 MHz, DMSO-d₆): δ 8.09-8.14 (m, 4 H), 7.01-7.06 (m, 4 H), 3.72 (s, 8 H) ppm, ¹³C NMR (75 MHz, DMSO-d₆): δ 154.4, 137.2, 126.2, 122.2, 45.6 ppm (Table 3).

Figure S21. ¹H NMR and ¹³C NMR spectra of diethylphenylphosphonate ¹H NMR (400 MHz, CDCl₃): δ 7.80 (dd, 2 H, J = 13.2, $J_{HH} = 8.4$ Hz), 7.51-7.53 (m, 1 H), 7.42-7.47 (m, 2 H), 4.16-4.05 (m, 4 H), 1.30 (t, 6 H, $J_{HH} = 6.8$ Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 132.3 (d, $J_{CP} = 3.0$ Hz), 131.7 (d, $J_{CP} = 10.0$ Hz), 128.4 (d, $J_{CP} = 15.0$ Hz), 128.3 (d, $J_{CP} = 186.0$ Hz), 62.0 (d, $J_{CP} = 5.0$ Hz), 16.3 (d, $J_{CP} = 7.0$ Hz) ppm (Table 4, entries 1, 6, 12, 15 and 16).

Figure S22. ¹H NMR and ¹³C NMR spectra of diethyl 4-chlorophenylphosphonate ¹H NMR (400 MHz, CDCl₃): δ 7.76 (dd, 2 H, J_{HH} = 12.8 Hz, J_{HH} = 8.4 Hz), 7.46 (dd, 2 H, J_{HH} = 8.2 Hz, J_{HH} = 3.6 Hz), 4.06-4.19 (m, 4 H), 1.34 (t, 6 H, J_{HH} = 7.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 138.9 (d, J_{CP} = 4.0 Hz), 133.2 (d, J_{CP} = 10.0 Hz), 128.8 (d, J_{CP} = 16.0 Hz), 126.9 (d, J_{CP} = 190.0 Hz), 62.2 (d, J_{CP} = 5.0 Hz), 16.3 (d, J_{CP} = 7.0 Hz) ppm (Table 4, entries 3 and 9).

Figure S23. ¹H NMR and ¹³C NMR spectra of diethyl 4-iodophenylphosphonate ¹HNMR (400 MHz, CDCl₃): δ 7.85 (dd, 2 H, J_{HH} = 8.2 Hz, J_{HH} = 3.6 Hz), 7.54 (dd, 2 H, J_{HH} = 13 Hz, J_{HH} = 8.0 Hz), 4.06-4.19 (m, 4 H), 1.34 (t, 6 H, J_{HH} = 6.8 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 137.7 (d, J_{CP} = 16.0 Hz), 133.1 (d, J_{CP} = 10.0 Hz), 127.4 (d, J_{CP} = 189.0 Hz), 100.1 (d, J_{CP} = 4.0 Hz), 62.3 (d, J_{CP} = 5.0 Hz), 16.3 (d, J_{CP} = 7.0 Hz) ppm (Table 4, entry 4).

Figure S24.¹H NMR and ¹³C NMR spectra of diethyl 4-methoxyphenylphosphonate

¹H NMR (400 MHz, CDCl₃): δ 7.71 (dd, 1 H, J_{HH} = 12.8 Hz, J_{HH} = 8.8 Hz), 6.92 (dd, 1 H, J_{HH} = 8.8 Hz, J_{HH} = 3.2 Hz), 3.97-4.09 (m, 4 H), 3.80 (s, 3 H), 1.27 (t, 6 H, J_{HH} = 7.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 162.8 (d, J_{CP} = 4.0 Hz), 133.7 (d, J_{CP} =12.0 Hz), 119.3 (d, J_{CP} = 193.0 Hz), 113.9 (d, J_{CP} = 16.0 Hz), 61.8 (d, J_{CP} = 6.0 Hz), 16.2 (d, J_{CP} = 6.0 Hz) ppm (Table 4, entries 2 and 8).

Figure S25. ¹H NMR and ¹³C NMR spectra of diethyl (4-nitrophenyl) phosphonate ¹H NMR (300 MHz, CDCl₃): δ 8.30 (dd, 1 H, J_{HH} = 8.7 Hz, J_{HH} = 3.3 Hz), 8.00 (dd, 1 H, J_{HH} = 12.7 Hz, J_{HH} = 8.7 Hz), 4.06-4.27 (m, 4 H), 1.34 (t, 6 H, J_{HH} = 6.9 Hz) ppm. ¹³C NMR (75 MHz, CDCl₃), δ 150.2 (d, J_{CP} = 3.7 Hz), 135.8 (d, J_{CP} = 185.2 Hz), 133.0 (d, J_{CP} = 10.5 Hz), 123.3 (d, J_{CP} = 15.0 Hz), 62.7 (d, J_{CP} = 5.2 Hz), 16.3 (d, J_{CP} = 6.0 Hz), 16.1 (d, J_{CP} = 6.7 Hz) ppm (Table 4, entries 7 and 14).

Figure S26. ¹H NMR and ¹³C NMR spectra of diethyl 4-bromophenylphosphonate ¹H NMR (400 MHz, CDCl₃): δ 7.63 (dd, 2 H, $J_{HH} = 13.2$ Hz, $J_{HH} = 8.4$ Hz), 7.32 (dd, 2 H, $J_{HH} = 8.4$ Hz, $J_{HH} = 3.2$ Hz), 3.93-4.06 (m, 4 H), 1.20 (t, 6 H, $J_{HH} = 7.2$ Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 138.7 (d, $J_{CP} = 4.0$ Hz), 133.0 (d, $J_{CP} = 10.0$ Hz), 128.7 (d, $J_{CP} = 15.0$ Hz), 126.9 (d, $J_{CP} = 190.0$ Hz), 62.1 (d, $J_{CP} = 5.0$ Hz), 16.2 (d, $J_{CP} = 7.0$ Hz) ppm (Table 4, entry 10).

Figure S27. ¹H NMR and ¹³C NMR spectra of diethyl 4-tolylphosphonate ¹H NMR (300 MHz, CDCl₃): δ 7.72 (dd, 2 H, $J_{HH} = 13.2$ Hz, $J_{HH} = 8.1$ Hz), 7.29 (dd, 2 H, $J_{HH} = 8.1$ Hz, $J_{HH} = 3.3$ Hz), 4.01-4.21 (m, 4 H), 2.42 (s, 3 H), 1.33 (t, 6 H, $J_{HH} = 6.9$ Hz) ppm. ¹³C NMR (75 MHz, CDCl₃), δ 142.9 (d, $J_{CP} = 3.0$ Hz), 131.8 (d, $J_{CP} = 9.7$ Hz), 129.2 (d, $J_{CP} = 15.0$ Hz), 124.9 (d, $J_{CP} = 188.2$ Hz), 61.9 (d, $J_{CP} = 5.2$ Hz), 21.6, 16.3 (d, $J_{CP} = 6.7$ Hz), 16.1 (d, $J_{CP} = 6.7$ Hz) ppm (Table 4, entry 13).

Figure S28. ¹H NMR and ¹³C NMR spectra of tetraethylphenylbis (phosphonate) ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, 4 H, $J_{HH} = 10.2$ Hz, $J_{HH} = 6.8$ Hz), 4.09-4.18 (m, 8 H), 1.33 (t, 12 H, $J_{HH} = 7.2$ Hz), ppm. ¹³C NMR (100 MHz, CDCl₃), δ 131.6 (dd, $J_{CP} = 16.5$ Hz, $J_{CP} = 8.0$ Hz), 128.0 (d, $J_{CP} = 155.0$ Hz), 62.4 (d, $J_{CP} = 5.0$ Hz), 16.3 (d, $J_{CP} = 7.0$ Hz) ppm (Table 4, entries 5 and 11).

Figure S29. ¹H NMR and ¹³C NMR spectra of biphenyl

¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, 4 H, *J* = 6.8 Hz), 7.56 (t, 4 H, *J* = 8.0 Hz), 7.46 (t, 2 H, *J* = 7.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 141.3, 128.8, 127.3, 127.2 ppm (Table 5, entries 1, 5 and 10).

Figure S30. ¹H NMR and ¹³C NMR spectra of 4-methoxybiphenyl ¹H NMR (400 MHz, CDCl₃): δ 7.55 (t, 4 H, J = 8.8 Hz), 7.43 (t, 2 H, J = 8.0 Hz), 7.31 (t, 1 H, J= 7.2 Hz), 6.99 (d, 2 H, J = 8.8 Hz), 3.83 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 160.3, 142.0, 134.9, 129.9, 129.3, 127.9, 127.8, 115.3, 56.5 ppm (Table 5, entries 2 and 6).

Figure S31. ¹H NMR and ¹³C NMR spectra of 4-chlorobiphenyl

¹H NMR (400 MHz, CDCl₃): δ 7.51-7.57 (m, 4 H), 7.31-7.49 (m, 5 H) ppm. ¹³C NMR (75 MHz, DMSO-d₆), δ 139.4, 132.0, 131.1, 130.1, 129.3, 128.9, 128.2, 127.1 ppm (Table 5, entries 3 and 9).

Figure S32. ¹H NMR and ¹³C NMR spectra of 4-nitrobiphenyl

¹H NMR (400 MHz, CDCl₃): δ 8.29-8.30 (m, 2 H), 7.73-7.76 (m, 2 H), 7.62-7.64 (m, 2 H), 7.43-7.52 (m, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 148.7, 148.2, 139.9, 130.3, 130.0, 128.9, 128.5, 125.2 ppm (Table 5, entries 7 and 11).

Figure S33. ¹H NMR and ¹³C NMR spectra of 4-cyanobiphenyl

¹H NMR (400 MHz, CDCl₃): δ 7.68-7.74 (m, 4 H), 7.56-7.60 (m, 2 H), 7.41-7.51 (m, 3 H) ppm. ¹³C NMR (75 MHz, DMSO-d₆), δ 133.8, 132.1, 131.7, 131.7, 130.0, 128.6, 128.1, 127.9, 125.4 ppm (Table 5, entries 8 and 12).

Figure S34. ¹H NMR and ¹³C NMR spectra of 4-iodo-1, 1'-biphenyl

¹H NMR (300 MHz, CDCl₃): δ 7.67-7.73 (m, 6 H), 7.51 (t, 2 H, *J* = 7.8 Hz), 7.40 (t, 1 H, *J* = 7.2 Hz) ppm. ¹³C NMR (75 MHz, CDCl₃), δ 141.0, 140.0, 138.2, 131.6, 130.3, 129.0, 128.2, 93.2 ppm (Table 5, entry 4).

Figure S35. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl cinnamate ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, 1 H, *J* = 16.0 Hz), 7.43-7.45 (m, 2 H), 7.29-7.30 (m, 3 H), 6.36 (d, 1 H, *J* = 16.0 Hz), 4.13 (t, 2 H, *J* = 6.8 Hz), 1.59-1.62 (m, 2 H), 1.34-1.36 (m, 2 H), δ 0.88 (t, 3 H, *J* = 7.6 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 166.8, 144.4, 134.4, 130.1, 128.8, 128.0, 118.2, 64.3, 30.8, 19.2, 13.7 ppm (Table 6, entries 1, 7 and 10).

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, 1 H, J = 16.4 Hz), 7.45-7.47 (m, 2 H), 7.31-7.33 (m, 3 H), 6.38 (d, 1 H, J = 16.4 Hz), 3.74 (s, 3 H) ppm.¹³C NMR (100 MHz, CDCl₃), δ 167.3, 144.8, 134.3, 130.3, 128.9, 128.1, 117.7, 51.6 ppm (Table 6, entry 2).

Figure S37. ¹H NMR and ¹³C NMR spectra of (*E*)-ethyl cinnamate

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, 1 H, J = 16.0 Hz), 7.41-7.42 (m, 2 H), 7.27-7.28 (m, 3 H), 6.35 (d, 1 H, J = 16.0 Hz), 4.19 (q, 2 H, J = 8.0 Hz), 1.43 (t, 3 H, J = 8.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 166.6, 144.3, 134.3, 130.1, 128.7, 127.9, 11.2, 60.0, 14.2 ppm (Table 6, entry 3).

Figure S38. ¹H NMR and ¹³C NMR spectra of (*E*)-methyl 2-methyl-3-phenylacrylate ¹H NMR (300 MHz, CDCl₃): δ 7.74 (s, 1 H), 7.22-7.47 (m, 5 H), 3.86 (s, 3 H), 2.16 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 169.1, 138.9, 135.8, 129.6, 127.9, 52.0, 14.1 ppm (Table 6, entry 4).

Figure S39. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-methoxyphenyl) acrylate ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, 1 H, *J* = 16.0 Hz), 7.39 (d, 3 H, *J* =4.2 Hz), 6.24 (d, 1 H, *J* = 16.0 Hz), 4.13 (m, 2 H, *J* =7.0 Hz), 3.72 (s, 3 H), 1.60-1.62 (m, 2 H), 1.35-1.40 (m, 2 H), 0.91 (t, 3 H, *J* =7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 167.1, 161.2, 144.0, 129.5, 127.0, 115.5, 114.1, 64.0, 55.0, 30.7, 19.1, 13.6 ppm (Table 6, entry 5).

Figure S40. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-chlorophenyl) acrylate ¹H NMR (300 MHz, CDCl₃): δ 7.65 (d, 1 H, *J* = 16.0 Hz), 7.47 (d, 2 H, *J* = 8.5 Hz), 7.37 (d, 2 H, *J* = 8.5 Hz), 6.43 (d, 1 H, *J* = 16.0 Hz), 4.24 (t, 2 H, *J* = 6.6 Hz), 1.40-1.52 (m, 2 H), 1.67-1.76 (m, 2 H), 0.99 (t, 3 H, *J* = 7.3 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 166.7, 143.0, 136.0, 132.9, 129.4, 129.1, 118.8, 64.4, 30.7, 19.2, 13.7 ppm (Table 6, entry 6).

Figure S41. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-nitrophenyl) acrylate ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, 2 H, *J* = 8.0 Hz), 7.63-7.68 (m, 3 H), 6.53 (d, 1 H, *J* = 16.0 Hz), 4.17-4.24 (m, 2 H), 1.62-1.69 (m, 2 H), 1.35-1.44 (m, 2 H), 0.92 (t, 3 H, *J* = 7.2 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 166.0, 148.3, 141.5, 140.5, 128.6, 124.0, 122.5, 64.7, 30.6, 19.1, 13.6 ppm (Table 6, entries 8 and 11).

Figure S42. ¹H NMR and ¹³C NMR spectra of (*E*)-*n*-butyl 3-(4-cyanophenyl) acrylate ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, 2 H, *J* = 8.0 Hz), 7.57 (d, 1 H, *J* = 15.2 Hz), 7.54 (d, 2 H, *J* = 8.4 Hz), 6.45 (d, 1 H, *J* = 16.0 Hz), 4.14 (t, 2 H, *J* = 6.8 Hz), 1.57-1.64 (m, 2 H), 1.30-1.38 (m, 2 H), 0.77 (t, 3 H, *J* = 7.0 Hz) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 165.7, 141.8, 138.4, 132.4, 128.3, 121.6, 118.1, 113.0, 64.4, 30.5, 19.0, 13.5 ppm (Table 6, entries 9 and 12).

Figure S43. ¹H NMR and ¹³C NMR spectra of (*E*)-1,2-diphenylethene ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, 4 H, *J* = 7.2 Hz), 7.42 (t, 4 H, *J* = 7.0 Hz), 7.33 (t, 2 H, *J* = 6.8 Hz), 7.18 (s, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 137.4, 128.8, 127.8, 126.7 ppm (Table 6, entries 13, 15 and 17).

Figure S44. ¹H NMR and ¹³C NMR spectra of (*E*)-1-methoxy-4-styrylbenzene ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.52 (m, 3 H), 7.36 (t, 2 H, *J* = 7.6 Hz), 7.09 (d, 2 H, *J* = 16.0 Hz), 6.99 (d, 2 H, *J* = 16.4 Hz), 6.92 (d, 2 H, *J* = 8.4 Hz), 3.89 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 159.3, 137.7, 130.1, 128.7, 128.2, 127.8, 127.2, 126.6, 126.3, 114.1, 55.3 ppm (Table 6, entry 14).

Figure S45. ¹H NMR and ¹³C NMR spectra of (*E*)-1-nitro-4-styrylbenzene ¹H NMR (400 MHz, CDCl₃): δ 8.15-8.26 (m, 2 H), 7.49-766 (m, 4 H), 7.40-7.45 (m, 4 H), 7.06-7.18 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃), δ 147.8, 145.0, 137.3, 134.4, 130.0, 128.2, 128.0, 127.4, 125.2 ppm (Table 6, entry 16).