Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Synthesis and CO₂ photoreduction of two 3d–4f

heterometal-organic frameworks

Yu Yang, a Yaomei Fu, b Siqi You, a Mingyue Li, a Chao Qin, a Liang Zhao and Zhongmin Sua

^aKey Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University. Changchun, Jilin, 130024 (China). Email: <u>qinc703@nenu.edu.cn</u>; <u>zhaol352@nenu.edu.cn</u>

^bShandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 (China)

Experimental Procedures

Materials

All the reagents were purchased from chemical suppliers without any further purification.

Characterization

The elemental analyses of C, H, and N were performed on a Perkin-Elmer 2400 CHN elemental analyzer. X-ray diffraction patterns (PXRD) were recorded on a Siemens D5005 diffractometer with graphite-monochromatized Cu K α (λ = 1.5418 Å) radiation. The Fourier transform infrared (FT-IR) spectra were recorded in the range of 4000–400 cm⁻¹ using a Matton Alpha-Centauri FT-IR spectrophotometer with KBr pellets. Thermogravimetric analyses (TGA) were performed using a Perkin-Elmer TG-7 analyzer heated from 25 °C to 800 °C under N₂ at a heating rate of 10 °C min⁻¹. The UV–vis absorption spectra were recorded on a Shimadzu UV-2550 spectrophotometer in the range of 200–1600 nm. Steady-state photoluminescence (PL) spectra and time-resolved PL decay spectra were performed on a Spectrometer (Hitachi F-4600). The photoluminescent quenching of [Ru(bpy)₃]Cl₂ (7 mg) were performed in the 4mL MeCN of increasing amounts of catalyst (0, 0.25, 0.5, 0.75, and 1.0 mg) respectively.

Single-Crystal X-ray Crystallography

Single-crystal diffraction data were recorded on a Bruker Apex CCD II diffractometer at 296 K, with graphitemonochromated Mo-K α radiation (λ = 0.71073 Å). The data frames were recorded and processed using the APEX 2 suite of programs. The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS. The structures were solved by the direct method using SHELXS or SHELXT and refined by fullmatrix least-squares on F^2 using the SHELXL software.

Electrochemical Measurements

The Mott-Schottky plots were measured on an electrochemical system (CHI760e) via a conventional three-electrode system in a 0.1 M acetonitrile solution of tetrabutylammonium hexafluorophosphate. The 6mg catalyst was dispersed in 1 mL acetonitrile solution to produce homogeneous slurry. Subsequently, 60 μ L of the slurry was transferred to a fluoride-tin oxide (FTO) glass plate covered with about 1 cm² of platinum plate as a counter at frequencies of 500, 800 and 1000 Hz, Ag / AgCl were used as reference electrodes.

Results and Discussion

Fig. S1 PXRD patterns of 1 with simulated (black line), as-synthesized (red line).

Fig. S4 UV-Vis spectra of 1 (left) and 2(right).

Fig. S5 Product of CO and H_2 evolution catalyzed by **2** in the presence of CO₂-saturated CH₃CN/TEOA/H₂O (4:1:1, V:V:V) solvent mixture under irradiation using a 300 W Xe lamp at 293K.

Fig. S6 Effect of adding 1mg 1 and 2 on the steady-state fluorescence spectra of [Ru(bpy)₃]Cl₂.

Fig. S7 The schematic energy-level diagrams showing electron transfer form $[Ru(bpy)_3]^{2+}$ to 1 (left) and 2 (right).

Compound	1	2
Empirical formula	$C_{40}H_{33}Gd_2N_9NiO_{23}\\$	$C_{44}H_{48}CoGd_2N_9O_{23}\\$
Formula weight	1380.96	1444.34
Temperature/K	173.02	173.02
Crystal system	monoclinic	triclinic
Space group	C2/c	P-1
a/Å	17.5924(13)	11.0599(10)
b/Å	16.7807(12)	12.4532(10)
<i>c</i> /Å	20.6012(15)	22.2391(18)
α/°	90	101.704(3)
в/°	110.266(2)	103.402(3)
γ/°	90	95.429(3)
Volume/ų	5705.2(7)	2885.2(4)
Z	4	2
$\rho_{calc}g/cm^3$	1.608	1.663
μ/mm ⁻¹	2.704	2.639
F(000)	2704.0	1428.0
Reflections collected	40832	66850
Independent reflections	5072 [R _{int} = 0.0970, R _{sigma} =	10259 [R _{int} = 0.0557, R _{sigma} =
independent reflections	0.0517]	0.0326]
Goodness-of-fit on F ²	1.045	1.035
Final R indexes [I>=2σ (I)]	R ₁ = 0.0384, wR ₂ = 0.1021	$R_1 = 0.0294$, $wR_2 = 0.0821$
Final R indexes [all data]	R ₁ = 0.0486, wR ₂ = 0.1100	R ₁ = 0.0380, wR ₂ = 0.0863

Table S1. Crystal data and structure refinements for 1 and 2

 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{c}||/\Sigma |F_{0}|. {}^{b}wR_{2} = [\Sigma w(FO^{2} - Fc^{2})^{2}/\Sigma w(FO^{2})^{2}]^{1/2}$

Catalyst	Light source (nm)	Photosensitizer	CO production rate	Reference
PCN-250-Fe ₂ Mn	420<λ<800	[Ru(bpy)]Cl ₂	21.51 mmol g ⁻¹ h ⁻¹	Appl. Catal. B: Environ. 2020, 276, 119173.
PCN-250-Fe ₃	420<λ<800	[Ru(bpy)]Cl ₂	13.45 mmol g ⁻¹ h ⁻¹	
BIF-101	λ≥420	[Ru(bpy)]Cl ₂	5830 μmol g ⁻¹ h ⁻¹	J. Mater. Chem. A, 2019, 7, 17272-17276
Compound 2	λ≥420	[Ru(bpy)]Cl ₂	5625 μmol g ⁻¹ h ⁻¹	This work
(Co/Ru)n-UiO-67(bpydc)	λ>450	[Ru(bpy)]Cl ₂	4520 μmol g ⁻¹ h ⁻¹	Appl. Catal. B: Environ. 2019, 245, 496-501.
2D-Co ₂ TCPE-PE	λ≥420	[Ru(bpy)]Cl ₂	4147 μmol g ⁻¹ h ⁻¹	Angew. Chem., Int. Ed., 2020, 59, 23588 – 23592
Compound 1	λ≥420	[Ru(bpy)]Cl ₂	3811 μmol g ⁻¹ h ⁻¹	This work
BIF-29	λ≥420	[Ru(bpy)]Cl ₂	3334 μmol g ⁻¹ h ⁻¹	Angew. Chem., Int. Ed., 2019, 58, 11752- 11756
2D-Ni ₂ TCPE-PE	λ≥420	[Ru(bpy)]Cl ₂	3000 μmol g ⁻¹ h ⁻¹	
2D-Ni ₂ TCPE-ME	λ≥420	[Ru(bpy)]Cl ₂	2944 µmol g ⁻¹ h ⁻¹	Angew. Chem., Int. Ed., 2020, 59, 23588 -
2D-Co ₂ TCPE	λ≥420	[Ru(bpy)]Cl ₂	2560 μmol g ⁻¹ h ⁻¹	23592
2D-Ni ₂ TCPE	λ≥420	[Ru(bpy)]Cl ₂	2000 µmol g ⁻¹ h ⁻¹	
MOF-Co	λ≥420	[Ru(bpy)]Cl ₂	1140 μmol g ⁻¹ h ⁻¹	ACS Catal. 2019, 9, 1726-1732.
MOF-Ni	λ≥420	[Ru(bpy)]Cl ₂	371.6 µmol g ⁻¹ h ⁻¹	
MOF-525-Co	λ≥420		201.6 μmol g ⁻¹ h ⁻¹	Angew. Chem., Int. Ed., 2016, 55, 14310- 14314.
Co-ZIF-9	λ>420	[Ru(bpy)]Cl ₂	83.6 µmol h-1	Angew. Chem., Int. Ed., 2014, 53, 1034-1038.

Table S2. The comparison of CO evolution rate of reported MOFs for converting CO_2 to CO under visible light irradiation

Table S3. The comparison of the photocatalytic selectivity of reported MOFs for converting CO_2 to CO under visible light irradiation

	Light			
Catalyst	source	Photosensitizer	Selectivity (%)	Reference
	(nm)			
MAF-X27/-OH	λ≥420	[Ru(bpy)]Cl ₂	98.2	J. Am. Chem. Soc. 2018, 140, 38-41.
MOF-Ni	λ≥420	[Ru(bpy)]Cl ₂	97.7	ACS Catal. 2019, 9, 1726-1732.
2D-Ni ₂ TCPE-PE	λ≥420	[Ru(bpy)]Cl ₂	97.31	Angew. Chem., Int. Ed., 2020, 59, 23588 – 23592
2D-Ni ₂ TCPE	λ≥420	[Ru(bpy)]Cl ₂	97.21	
2D-Ni ₂ TCPE-ME	λ≥420	[Ru(bpy)]Cl ₂	96.93	
Compound 1	λ≥420	[Ru(bpy)]Cl ₂	94.85	This work
Compound 2	λ≥420	[Ru(bpy)]Cl ₂	94.46	This work
BIF-101	λ≥420	[Ru(bpy)]Cl ₂	84.1	J. Mater. Chem. A, 2019, 7, 17272-17276
BIF-29	λ≥420	[Ru(bpy)]Cl ₂	82.6	Angew. Chem., Int. Ed., 2019, 58, 11752-11756
PCN-250-Fe2Mn	420<λ<800	[Ru(bpy)]Cl ₂	82.2	Appl. Catal. B: Environ. 2020, 276, 119173.
2D-Co ₂ TCPE	λ≥420	[Ru(bpy)]Cl ₂	75.76	Angew. Chem., Int. Ed., 2020, 59, 23588 -
				23592
PCN-250-Fe3	420<λ<800	[Ru(bpy)]Cl ₂	75.5	Appl. Catal. B: Environ. 2020, 276, 119173.
2D-Co ₂ TCPE-PE	λ≥420	[Ru(bpy)]Cl ₂	74.36	Angew. Chem., Int. Ed., 2020, 59, 23588 -
				23592
Co-ZIF-9	λ>420	[Ru(bpy)]Cl ₂	58	Angew. Chem., Int. Ed., 2014, 53, 1034-1038.
MOF-Co	λ≥420	[Ru(bpy)]Cl ₂	47.4	ACS Catal. 2019, 9, 1726-1732.
ZIF-8	λ≥420	[Ru(bpy)]Cl ₂	47.4	Appl. Catal. B: Environ. 2017, 209, 476-482
Zr-UIO-66-NH ₂	λ≥420	[Ru(bpy)]Cl ₂	42.8	