Facile synthesis of porous porphyrin-based polymers by solvent-crosslinking method

Xiaowei Jianga, Zhihong Liua, Libo Ma, Yu Tao and Yali Luob**

a Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou 213164, People’s Republic of China

b State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China

Tel: +86 0519 86332047; Email: 15262760662@163.com

Tel: +86 25 83172114; Email: luoyali@njtech.edu.cn
Contents
Fig. S1 FTIR spectra of the POTPPs.
Fig. S2 Powder X-ray diffraction patterns of POTPPs
Fig. S3 Secondary electron image of POTPP-1.
Fig. S4 Secondary electron image of POTPP-2
Fig. S5 Secondary electron image of POTPP-3
Fig. S6 TGA plots of POTPPs under nitrogen atmosphere.
Fig. S7 Isosteric heats of adsorption for CO$_2$.
Fig. S8 Isosteric heats of adsorption for CH$_4$.
Fig. S9 Initial slope calculation of CO$_2$ and CH$_4$ uptake isotherms at 273 K for POTPP-1.
Fig. S10 Initial slope calculation of CO$_2$ and CH$_4$ uptake isotherms at 273 K for POTPP-2.
Fig. S11 Initial slope calculation of CO$_2$ and CH$_4$ uptake isotherms at 273 K for POTPP-3.
Fig. S1 FTIR spectra of the POTPPs.

Fig. S2 Powder X-ray diffraction patterns of POTPPs

Fig. S3 Secondary electron image of POTPP-1.
Fig. S4 Secondary electron image of POTPP-2

Fig. S5 Secondary electron image of POTPP-3

Fig. S6 TGA plots of POTPPs under nitrogen atmosphere.
Fig. S7 Isosteric heats of adsorption for CO$_2$.

Fig. S8 Isosteric heats of adsorption for CH$_4$.

Fig. S9 Initial slope calculation of CO$_2$ and CH$_4$ uptake isotherms at 273 K for POTPP-1.
Fig. S10 Initial slope calculation of CO₂ and CH₄ uptake isotherms at 273 K for POTPP-2.

Fig. S11 Initial slope calculation of CO₂ and CH₄ uptake isotherms at 273 K for POTPP-3.