Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Material

Iron and nitrogen co-doped graphene quantum dots as highly active peroxidase for sensitive detection of L-cysteine

Xiaochun Deng^{†,a}, Jingwen Zhao^{†,a}, Yao Ding^b, Hongliang Tang^{*,b}, Fengna Xi^{*,a}

Department of Chemistry, Zhejiang Sci-Tech University, 5 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, PR China

Fig. S1 The photographs of Fe,N-GQDs solution diluted by a factors 10 after storage at room temperature for one month.

Fig. S2 The absorbance change ratio of Fe,N-GQDs+H₂O₂+TMB after different kinds of amino acids (50 μ M) was added and reacted for 10 min.

Fig. S3 Linear calibration plot for L-Cys detection in amino acid tablets solution based on the peroxidase of Fe,N-GQDs.

	Substrate TMB		Substrate H2O2		Poforonco
Catalyst _					
	Km	V _{max}	Km	V _{max}	Kelelence
	(mM)	(10 ⁻⁸ M/s)	(mM)	(10 ⁻⁸ M/s)	
HRP	0.434	10	2.39	4.36	[1]
SWNT-NH ₂ @hemin	0.528	10.08	26.012	22.558	[2]
PEI-rGO-Hemin-BSA	1.8	8.451	2.13	2.339	[3]
MA-Hem/Au-Ag	2.39	1.42	2.7	14.1	[4]
Hemin-porous g-C ₃ N ₄ hybrid nanosheets	0.119	11.6	0.682	2	[5]
His-GQD/hemin	0.133	9.7	3.8	10.55	[6]
Fe,N-GQDs	0.1351	15.99	1.905	12.09	This work

Table S1 The apparent Michaelis-Menten constants (K_m) and maximum reaction rates (V_{max}) of different catalysts

Songing mothod	Motorial	Detection limit	Linear range	Reference	
Sensing method	Wateria	(µM)	(µM)	Kelerence	
Colorimetry	Ag ⁺ -CDs	0.82	1-60	[7]	
Colorimetry	$g-C_3N_4$	0.2	1-20	[8]	
Colorimetry	FeCo carbon nanofibers	0.15	1-20	[9]	
Electrochemistry	N-doped rGO modified	0.8	1.3-720	[10]	
	with Y ₂ O ₃				
Electrochemistry	Carbon electrode	0.09	0.3-3.6	[11]	
	modified with carbon		3.9-7.2		
	dots				
Chemiluminescence	Lucigenin-carbon dots	8.8	10-100	[12]	
Fluorometry	N-CDs	0.35	0-100	[13]	
Fluorometry	N-acetyl-L-cysteine-	0.16	1.0-110	[14]	
	capped AuNPs-CDs				
Fluorometry	AuNCs-CDs	0.96	1-100	[15]	
Fluorometry	N,S-CQDs	0.54	10-200	[16]	
Colorimetry	Fe,N-GQDs	0.14	0.5-50	This work	

Table S2 Comparison of the performance for detection of L-Cys using different carbon-based materials

References

- 1 L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nat. Nanotechnol.*, 2007, **2**, 577-583.
- 2 W. Wu, Q. Wang, J. Chen, L. Huang, H. Zhang, K. Rong and S. Dong, *Nanoscale*, 2019, **11**, 12603-12609.
- 3 X. Zhang, Y. Yu, J. Shen, W. Qi and H. Wang, Anal. Chim. Acta, 2019, 1070, 80-87.
- 4 H. Liu, Y. Hua, Y. Cai, L. Feng, S. Li and H. Wang, Anal. Chim. Acta, 2019, 1092, 57-65.
- 5 Y. Wang, R. L. Liu, G. N. Chen, L. Wang, P. Yu, H. Shu, K. Bashir and Q. Fu, Microchim. Acta, 2019, 186, 446.
- 6 Q. Xin, X. Jia, A. Nawaz, W. Xie, L. Li and J. R. Gong, Nano Res., 2020, 13, 1427-1433.
- 7 X. Ma, W. Liao, H. Zhou, Y. Tong, F. Yan, H. Tang and J. Liu, J Mater Chem B, 2020, 8, 10630-10636.
- 8 Y. Wu, Q. Chen, S. Liu, H. Xiao, M. Zhang and X. Zhang, *Chin Chem Lett*, 2019, **30**, 2186-2190.
- 9 Z. Yang, Y. Zhu, G. Nie, M. Li, C. Wang and X. Lu, *Dalton Trans.*, 2017, 46, 8942-8949.
- 10 S. Yang, G. Li, Y. Wang, G. Wang and L. Qu, Microchim. Acta, 2016, 183, 1351-1357.
- 11 N. Amini, M. Shamsipur, M. B. Gholivand and A. Barati, Microchem. J., 2017, 131, 9-14.
- 12 Y. L. Xu, R. B. Bai, C. Y. Qi, Z. Ren, X. Z. Jia, Z. G. Kan, C. L. Li and F. Wang, J Fluoresc, 2019, 29, 819-825.
- 13 C. Wang, Y. Lan, F. Yuan, T. H. Fereja, B. Lou, S. Han, J. Li and G. Xu, Microchim. Acta, 2019, 187, 50.
- 14 Y. L. Xu, R. B. Bai, C. Y. Qi, Z. Ren, X. Z. Jia, Z. G. Kan, C. L. Li and F. Wang, J Fluoresc, 2019, 29, 819-825.
- 15 B. Han, Y. Li, X. Hu, Q. Yan, J. Jiang, M. Yu, T. Peng and G. He, Anal. Methods, 2018, 10, 3945-3950.
- 16 H. Wu, J. Jiang, X. Gu and C. Tong, *Microchim. Acta*, 2017, **184**, 2291-2298.