Supporting information

Design, Synthesis, Antifungal Evaluation and Molecular Docking of Novel 1,2,4-Triazole Derivatives Containing Oxime Ether and Cyclopropyl Moieties as Potential Sterol Demethylase Inhibitors

Sheng-Xin Sun,^{*a*} Jing-Hua Yan,^{*a*} Jiang-Tao Zuo,^{*a*} Xiao-Bin Wang,^{*a*} Min Chen,^{*a,b*} Ai-Min Lu,^{*a*} Chun-Long Yang^{**ab*} and Guo-Hua Li^{**a*}

^a Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China

^b Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China

*Corresponding author: ycl@njau.edu.cn (C.L. Yang); liguohua@njau.edu.cn (G.H. Li)

Table of Contents

1	Spectrograms of target compounds 5a-5x	3
2	Molecular docking related information	44

1 Spectrograms of target compounds 5a-5x

Compound 5a

Figure 2. ¹³C NMR sprectrum of title compound 5a

Spectrum from A01.wiff (sample 1) - Sample01, Experiment 1, +TOF MS (80 - 800) from 0.072 to 0.081 min

Figure 3. HRMS sprectrum of title compound 5a

Compound 5b

Figure 5. ¹³C NMR sprectrum of title compound 5b

Figure 6. ¹⁹F NMR sprectrum of title compound 5b

Spectrum from A02.wiff (sample 1) - Sample02, Experiment 1, +TOF MS (80 - 800) from 0.085 to 0.094 min

Figure 7. HRMS sprectrum of title compound 5b

Compound 5c

Figure 9. ¹³C NMR sprectrum of title compound 5c

Figure 10. ¹⁹F NMR sprectrum of title compound 5c

Figure 11. HRMS sprectrum of title compound 5c

Compound 5d

Figure 12. ¹H NMR sprectrum of title compound 5d

Figure 13. ¹³C NMR sprectrum of title compound 5d

Spectrum from A04.wiff (sample 1) - Sample04, Experiment 1, +TOF MS (80 - 800) from 0.072 to 0.082 min

Figure 17.¹⁹F NMR sprectrum of title compound 5e

Spectrum from A05.wiff (sample 1) - Sample05, Experiment 1, +TOF MS (80 - 800) from 0.085 to 0.094 min

Figure 21. ¹⁹F NMR sprectrum of title compound 5f

Spectrum from A06.wiff (sample 1) - Sample06, Experiment 1, +TOF MS (80 - 800) from 0.085 to 0.094 min

Figure24. ¹³C NMR sprectrum of title compound 5g

Figure 25. HRMS sprectrum of title compound 5g

Compound 5h

Figure 26. ¹H NMR sprectrum of title compound 5h

Figure 27. ¹³C NMR sprectrum of title compound 5h

Spectrum from A08.wiff (sample 1) - Sample08, Experiment 1, +TOF MS (80 - 800) from 0.086 to 0.095 min

Figure 30. ¹³C NMR sprectrum of title compound 5i

Compound 5j

Figure 32. ¹H NMR sprectrum of title compound 5j

Figure 33. ¹³C NMR sprectrum of title compound 5j

Spectrum from A10.wiff (sample 1) - Sample10, Experiment 1, +TOF MS (80 - 800) from 0.082 to 0.091 min

Figure 36.¹³C NMR sprectrum of title compound 5k

Spectrum from A11.wiff (sample 1) - Sample11, Experiment 1, +TOF MS (80 - 800) from 0.067 to 0.076 min

Figure 37. HRMS sprectrum of title compound 5k

Figure 39. ¹³C NMR sprectrum of title compound 5l

Spectrum from B12.wiff (sample 1) - B12, Experiment 1, +TOF MS (80 - 800) from 0.064 to 0.073 min

Figure 43. ¹⁹F NMR sprectrum of title compound 5m

Spectrum from A12.wiff (sample 1) - Sample12, Experiment 1, +TOF MS (80 - 800) from 0.073 to 0.082 min

Figure46.¹³C NMR sprectrum of title compound 5n

Spectrum from A13.wiff (sample 1) - Sample13, Experiment 1, +TOF MS (80 - 800) from 0.076 to 0.085 min

Figure 47. HRMS sprectrum of title compound 5n

Compound 50

Figure 48. ¹H NMR sprectrum of title compound 50

Figure 49. ¹³C NMR sprectrum of title compound 50

Spectrum from A14.wiff (sample 1) - Sample14, Experiment 1, +TOF MS (80 - 800) from 0.086 to 0.095 min

Figure 52. ¹³C NMR sprectrum of title compound 5p

20%

Spectrum from A14.wiff (sample 1) - Sample14, Experiment 1, +TOF MS (80 - 800) from 0.086 to 0.095 min

272.1589

Figure 53. HRMS sprectrum of title compound 5p

Compound 5q

Figure 54. ¹H NMR sprectrum of title compound 5q

Figure 55. ¹³C NMR sprectrum of title compound 5q

Spectrum from A16.wiff (sample 1) - Sample16, Experiment 1, +TOF MS (80 - 800) from 0.091 to 0.108 min

Figure 58. ¹³C NMR sprectrum of title compound 5r

Figure 59. HRMS sprectrum of title compound 5r

Compound 5s

Figure 61. ¹³C NMR sprectrum of title compound 5s

Spectrum from A18.wiff (sample 1) - Sample18, Experiment 1, +TOF MS (80 - 800) from 0.090 to 0.106 min

Figure 65. ¹⁹F NMR sprectrum of title compound 5t

Spectrum from A19.wiff (sample 1) - Sample19, Experiment 1, +TOF MS (80 - 800) from 0.091 to 0.108 min

Figure 69. ¹⁹F NMR sprectrum of title compound 5u

Spectrum from A21.wiff (sample 1) - Sample21, Experiment 1, +TOF MS (80 - 800) from 0.090 to 0.107 min

Figure 73. ¹⁹F NMR sprectrum of title compound 5v

Spectrum from A20.wiff (sample 1) - Sample20, Experiment 1, +TOF MS (80 - 800) from 0.090 to 0.107 min

Figure 76. ¹³C NMR sprectrum of title compound 5w

Spectrum from A22.wiff (sample 1) - Sample22, Experiment 1, +TOF MS (80 - 800) from 0.090 to 0.107 min

Figure 77. HRMS sprectrum of title compound 5w

Compound 5x

Figure 78. ¹H NMR sprectrum of intermediate 5x

Spectrum from A23.wiff (sample 1) - Sample23, Experiment 1, +TOF MS (80 - 800) from 0.090 to 0.107 min

Figure 80. HRMS sprectrum of title compound 5x

2 Molecular docking related information

2.1 Protein sequence of FgCYP51

>tr|I6YDU0|I6YDU0_GIBZA Cyp51A OS=Gibberella zeae OX=5518 PE=3 SV=1MFHLLIYPLWVLVALFAVIIANLLYQQLPRRPDEPPLVFHWFPFFGNAVAYGLDPCG FFEKCREKHGDVFTFILFGRKIVACLGVDGNDFVLNSRLQDANAEEVYGPLTIPVFGSDV VYDCPNSKLMEQKKFVKFGLTQKALESHVQLIEREVLDYVETDPSFSGRTSTIDVPKAMA EITIFTASRSLQGEEVRRKLTAEFAALYHDLDLGFRPVNFLFPWLPLPHNRKRDAAHIKMR EVYMDIINDRRKGGIRTEDGTDMIANLMGCTYKNGQPVPDKEIAHMMITLLMAGQHSSS SASSWIVLHLASSPDMTEELYQEQLVNLSVNGALPPLQYSDLDKLPLLQNVVKETLRVHS SIHSILRKVKRPMQVPNSPYTITTDKVIMASPTVTAMSEEYFENAKTWNPHRWDNRAKEE VDTEDVIDYGYGAVSKGTKSPYLPFGAGRHRCIGEKFAYVNLGVIVATLVRNFRLSTIDG RPGVPETDYTSLFSRPAQPAFIRWERRKKI

2.2 Ramachandran plots of constructed protein FgCYP51

Figure 81. Ramachandran plots of constructed protein FgCYP51

2.3 Composite image of 4YUM and constructed protein FgCYP51

Figure 82. Composite image of 4yum (blue) and constructed protein (purple) FgCYP51

2.4 Molecular docking diagram of compound (*E*)-5k and (*S*)-tebuconazole

Figure 83. Molecular docking diagram of compound (*E*)-5k (A–C) and (*S*)-tebuconazole (D–F)