Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021.

Supporting Information

Nanospheres from coordination polymers of Ag^{+}with a highly hydrophilic thiol ligand in situ formed from dynamic covalent binding and a hydrophobic thiol

Yan Xu, ${ }^{\text {a }}$ Xiao-Sheng Yan, ${ }^{a}$ Si-Bo Zhang, ${ }^{\text {b }}$ Shao-Wei Li, ${ }^{\text {b }}$ Ning-Shao Xia, ${ }^{\text {b }}$ Tao Jiang, ${ }^{a}$ Zhao Li ${ }^{a}$ and Yun-Bao Jiang*, ${ }^{*}$

${ }^{\text {a }}$ Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
${ }^{\text {b }}$ State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China

E-mail: ybjiang@xmu.edu.cn

Table of Contents

1. Supplementary Spectral Data and Images.S2
1. Supplementary Spectral Data

$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}$

$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SH}$

$n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$

$n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{SH}$

$n-\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{SH}$

$n-\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{SH}$

$n-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SH}$

Scheme S1 Chemical structures of $n-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{SH}$ and their fluorinated derivative n $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SH}$.

Fig. S1 (a) Absorption spectra of (4-MPBA+D-glucose) in the presence of Ag^{+}of increasing concentration in $100 \mathrm{mM} \mathrm{Na} 2_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer solution of pH 10.5 and (b) absorbance at 382 nm versus equivalent of Ag^{+}. [4-MPBA] $=100 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]=0-2.0$ eq.

Fig. S2 (a) CD spectra (4-MPBA+D-glucose) in the presence of Ag^{+}of increasing concentration in $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer solution of pH 10.5 and (b) plots of CD signals at 284 nm and 336 nm versus equivalent of Ag^{+}. [4-MPBA] $=100 \mu \mathrm{M}$, [Dglucose $]=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]=0-1.4$ eq. Note that in the absence of d-glucose the coordination polymers of Ag^{+}with 4-MPBA are CD silent because there is no chiral element, despite their formation is suggested by variations in the absorption (Fig. S3).

Fig. S3 (a) Absorption spectra of 4-MPBA in the presence of Ag^{+}of increasing concentration in $100 \mathrm{mM} \mathrm{Na} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 and (b) plots of absorbance at 382 nm versus equivalent of $\mathrm{Ag}^{+} .[4-\mathrm{MPBA}]=100 \mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=0-2.0$ eq.

Fig. S4 Plots versus Ag^{+}concentration of CD signal at 332 nm of Ag^{+}-(4-MPBA+Dglucose $\left.+n-\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{SH}\right), \quad \mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\right.$ glucose $\left.+n-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SH}\right)$ and $\mathrm{Ag}^{+}-(4-$ MPBA+D-glucose) in $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5. [4-MPBA] $=100$ $\mu \mathrm{M},\left[n-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{SH}\right]=100 \mu \mathrm{M},\left[n-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SH}\right]=100 \mu \mathrm{M},[\mathrm{D}$-glucose $]=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]$ $=0-1.4$ eq.

Fig. S5 CD spectra of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\right.$ glucose $\left.+n-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{SH}\right), \mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $+n-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SH}$) and Ag^{+}-(4-MPBA+D-glucose) in $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5. [4-MPBA] = $100 \mu \mathrm{M},\left[n-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{SH}\right]=100 \mu \mathrm{M},\left[n-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SH}\right]=$ $100 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=60 \mu \mathrm{M}$ (red line), $120 \mu \mathrm{M}$ (other lines).

Fig. S6 Plots of CD signals of $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $)$ and $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$) of varying concentration of 4-MPBA. [4-MPBA] $=0-200 \mu \mathrm{M}$ (solid), $[4-\mathrm{MPBA}]+\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=200 \mu \mathrm{M}$ (hollow), [D-glucose] $=3 \mathrm{mM}$.

Fig. S7 Plots of CD signals of $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $)$ and $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$) in solutions of varying the pH . [4-MPBA] $=100 \mu \mathrm{M}$, $[n-$ $\left.\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM}$; $\left[\mathrm{Ag}^{+}\right]=60 \mu \mathrm{M}$ (solid), $160 \mu \mathrm{M}$ (hollow). $\mathrm{pH}=7,8,9,9.5,10,10.3,10.5$, or 10.8 .

Fig. S8 Absorption (a) and CD (b) spectra of (4-MPBA+D-glucose $+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$) in the presence of Ag^{+}of increasing concentration in $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5. [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M},[\mathrm{D}$-glucose $]=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]=0-2.0$ eq.

Fig. S9 Plots of CD signals of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{d}-\right.$ glucose $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ in 100 mM $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer solution of pH 10.5 versus equivalent of Ag^{+}. [4-MPBA] $=$ $\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M},[\mathrm{D}$-glucose $]=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]=0-2.0$ eq.

Fig. S10 CD spectra of Ag^{+}-(4-MPBA+D-glucose) (black line) and $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$) (red line) in $100 \mathrm{mM} \mathrm{Na} 2 \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer solution of pH 10.5. [4-MPBA] $=100 \mu \mathrm{M},\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M},[$ D-glucose $]=3 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=60$ $\mu \mathrm{M}$ (black line), $160 \mu \mathrm{M}$ (red line).

Fig. S11 Plots of CD signals of $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-\mathrm{glucose})$ and $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$) versus concentration of D-glucose in $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer solution of pH 10.5 . [4-MPBA] $=100 \mu \mathrm{M},\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M}$, [D-glucose] $=0.5-10 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=160 \mu \mathrm{M}$ (hollow), $\left[\mathrm{Ag}^{+}\right]=60 \mu \mathrm{M}$ (solid).

Fig. S12 TEM image (a) and size distribution (b) of $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-\mathrm{glucose}+n-$ $\left.\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ coordination polymers. [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=25 \mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=40 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM}$.

Fig. $\mathbf{S 1 3}$ TEM images of chain-like Ag^{+}-(4-MPBA+D-glucose) coordination polymers. [4-MPBA] $=50 \mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=30 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM}$.

Fig. S14 TEM images of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{d}\right.$-glucose $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ coordination polymers of varying concentration of D-glucose. The samples were prepared by dropping solutions onto carbon-coated copper grids followed by solvent evaporation in vacuum. [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=25 \mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=40 \mu \mathrm{M}$; [D-glucose $]=0.1$ mM (a), 0.25 mM (b), 0.5 mM (c), 3 mM (d).

Fig. S15 TEM images of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ coordination polymers. [4MPBA $]=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=25 \mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=40 \mu \mathrm{M}$.

Fig. S16 DLS measured hydrodynamic diameters $\left(D_{h}\right)$ of $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ glucose $+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$) of varying concentration in $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5. [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=5 \mu \mathrm{M}$ (a), $10 \mu \mathrm{M}$ (b), $15 \mu \mathrm{M}$ (c), $25 \mu \mathrm{M}$ (d), 50 $\mu \mathrm{M}(\mathrm{e}) ;[\mathrm{D}-\mathrm{glucose}]=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]=0.8 \mathrm{eq}$.

Fig. S17 DLS measured hydrodynamic diameters (D_{h}) of Ag^{+}-(4-MPBA+D-glucose) of varying concentration in $100 \mathrm{mM} \mathrm{Na} 2 \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 . [4-MPBA] $=10 \mu \mathrm{M}$ (a), $20 \mu \mathrm{M}$ (b), $30 \mu \mathrm{M}$ (c), $50 \mu \mathrm{M}$ (d), $100 \mu \mathrm{M}$ (e); [D-glucose] $=3 \mathrm{mM}$, $\left[\mathrm{Ag}^{+}\right]=0.6 \mathrm{eq}$.

Fig. S18 Plots of DLS measured hydrodynamic diameter $\left(\mathrm{D}_{\mathrm{h}}\right) \mathrm{of}_{\mathrm{Ag}}{ }^{+}$-(4-MPBA+Dglucose) and $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\right.$ glucose $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ of varying concentration in 100 $\mathrm{mM} \mathrm{Na} 2 \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of $\mathrm{pH} 10.5 .[R-\mathrm{SH}]=10-100 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM}$; $\left[\mathrm{Ag}^{+}\right]=0.6$ eq (blue), $0.8 \mathrm{eq}(\mathrm{red})$.

Fig. S19 TEM images of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\mathrm{glucose}+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ of varying concentration in $100 \mathrm{mM} \mathrm{Na} 2 \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer solution of pH 10.5 . [4-MPBA] = $\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=10 \mu \mathrm{M}(\mathrm{a}), 25 \mu \mathrm{M}$ (b), $50 \mu \mathrm{M}$ (c); [D-glucose] $=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]=0.8$ ([4-MPBA] $+\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]$).

Fig. S20 Partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\right.$ glucose $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ in 100 $\mathrm{mM} \mathrm{Na} 2 \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 in $\mathrm{D}_{2} \mathrm{O}$ using acetone as an internal standard. $[4-\mathrm{MPBA}]=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=200 \mu \mathrm{M},[\mathrm{D}-\mathrm{glucose}]=3 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=0-400 \mu \mathrm{M}$.

Fig. S21 Partial ${ }^{1} \mathrm{H}$ NMR spectra of 4-MPBA in Ag^{+}-(4-MPBA+d-glucose) in 100 $\mathrm{mM} \mathrm{Na} 2 \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 in $\mathrm{D}_{2} \mathrm{O}$ using acetone as an internal standard. $[4-\mathrm{MPBA}]=200 \mu \mathrm{M},[\mathrm{D}$-glucose $]=3 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=0-200 \mu \mathrm{M}$.

Fig. S22 Contents of free 4-MPBA calculated by ${ }^{1} \mathrm{H}$ NMR integrals versus added equivalent of Ag^{+}of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\mathrm{glucose}+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ (blue) and $\mathrm{Ag}^{+}-(4-$ MPBA+d-glucose) (red) in $100 \mathrm{mM} \mathrm{Na} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 in $\mathrm{D}_{2} \mathrm{O}$ using acetone as an internal standard. [4-MPBA] $=200 \mu \mathrm{M},\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=200 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=0-1.0 \mathrm{eq}$.

Fig. S23 Partial ${ }^{1} \mathrm{H}$ NMR spectra of $n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$ in $\mathrm{Ag}-\mathrm{SC}_{8} \mathrm{H}_{17}-n$ in $100 \mathrm{mM} \mathrm{Na} 2 \mathrm{CO}_{3}-$ NaHCO_{3} buffer of pH 10.5 in $\mathrm{D}_{2} \mathrm{O}$ using acetone as an internal standard. [$\left.n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]$ $=200 \mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=0-200 \mu \mathrm{M}$.

Fig. S24 Contents of free $n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$ calculated by ${ }^{1} \mathrm{H}$ NMR integrals versus added equivalent of Ag^{+}of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\mathrm{glucose}+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right.$) (blue) and ${\mathrm{Ag}-\mathrm{SC}_{8} \mathrm{H}_{17}-n}$ (red) in $100 \mathrm{mM} \mathrm{Na} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 in $\mathrm{D}_{2} \mathrm{O}$ using acetone as an internal standard. [4-MPBA] $=200 \mu \mathrm{M},\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=200 \mu \mathrm{M}$, [D-glucose] $=3 \mathrm{mM}$; $\left[\mathrm{Ag}^{+}\right]=0-1.0$ eq.

Fig. $\mathbf{S 2 5}$ (a) CD spectra and (b) plots of CD signals of Ag^{+}-(4-MPBA+glucose) of varying glucose $e e$ in $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 . [4-MPBA] = 100 $\mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=60 \mu \mathrm{M}$, [D-glucose] $+[\mathrm{L}$-glucose $]=4 \mathrm{mM}$.

Fig. S26 Plots of normalized CD signals at 284 nm of Ag^{+}-(4-MPBA+D-glucose) and Ag^{+}-(4-MPBA+D-glucose $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ versus $e e$ of glucose in $100 \mathrm{mM} \mathrm{Na} 2_{2} \mathrm{CO}_{3}-$ NaHCO_{3} buffer of pH 10.5 . [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M}$, [D-glucose] + [Lglucose $]=4 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=160 \mu \mathrm{M}$ (blue), $60 \mu \mathrm{M}$ (red).

Fig. S27 Plots of normalized CD signals at 336 nm of Ag^{+}-(4-MPBA+D-glucose) and Ag^{+}-(4-MPBA+D-glucose $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ versus $e e$ of glucose in $100 \mathrm{mM} \mathrm{Na} 2_{2} \mathrm{CO}_{3}-$ NaHCO_{3} buffer of pH 10.5 . [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M}$, [D-glucose] + [Lglucose $]=4 \mathrm{mM} ;\left[\mathrm{Ag}^{+}\right]=160 \mu \mathrm{M}$ (blue), $60 \mu \mathrm{M}$ (red).

α-D-glucose

α-D-xylose

α-D-galactose

Scheme S2 Chemical structures of the tested monosaccharides

Fig. S28 CD spectra of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\right.$ monosaccharide $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ in 100 mM $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaHCO}_{3}$ buffer of pH 10.5 . [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=100 \mu \mathrm{M}$, [Dmonosaccharide $]=3 \mathrm{mM},\left[\mathrm{Ag}^{+}\right]=160 \mu \mathrm{M}$.

Fig. S29 TEM images of (a) $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ and (b-f) $\mathrm{Ag}^{+}-(4-\mathrm{MPBA}+\mathrm{D}-$ monosaccharide $+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}$). Monosaccharide $=$ D-glucose (b), D-xylose (c), Dfructose (d), D-galactose (e) or D-mannose (f). [4-MPBA] $=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=25 \mu \mathrm{M}$, $\left[\mathrm{Ag}^{+}\right]=40 \mu \mathrm{M},[\mathrm{D}-$ monosaccharide $]=3 \mathrm{mM}$.

Fig. S30 DLS measured hydrodynamic diameters $\left(\mathrm{D}_{\mathrm{h}}\right)$ of $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ polymers (a) and $\mathrm{Ag}^{+}-\left(4-\mathrm{MPBA}+\mathrm{D}-\right.$ monosaccharide $\left.+n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right)$ of monosaccharide being (b) D-glucose, (c) D-xylose, (d) D-fructose, (e) D-galactose or (f) D-mannose. [4MPBA $]=\left[n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{SH}\right]=25 \mu \mathrm{M},\left[\mathrm{Ag}^{+}\right]=40 \mu \mathrm{M},[\mathrm{D}-$ monosaccharide $]=3 \mathrm{mM}$.

