Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information – Metal phosphide CuP₂ as a promising thermoelectric material: an insight from first-principles study*

Un-Gi Jong^a[†], Chol-Hyok Ri^a, Chol-Jin Pak^a, Chol-Hyok Kim^a, Stefaan Cottenier^b, and Chol-Jun Yu^a[‡]

^aChair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University, Pyongyang, PO Box 76, Democratic People's Republic of Korea

^bDepartment of Electromechanical, Systems and Metal Engineering & Center for Molecular Modeling (CMM),

Ghent University, Technologiepark-Zwijnaarde 46, BE-9052 Gent, Belgium

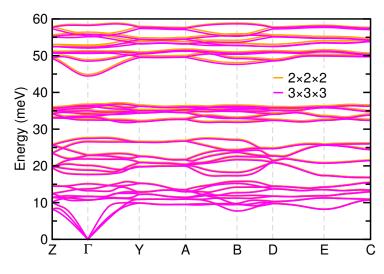


Figure S1. Comparison of harmonic phonon dispersion relations calculated using $2 \times 2 \times 2$ (brown-colored lines) and $3 \times 3 \times 3$ (pink-colored lines) supercells of monoclinic CuP₂ at 0 K.

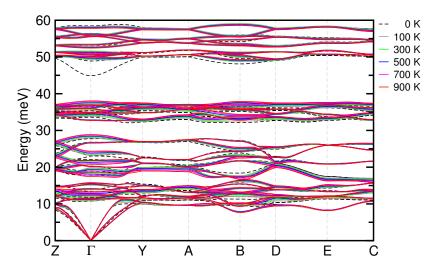


Figure S2. Temperature-dependent anharmonic phonon dispersion curves at different temperatures ranging from 100 to 900 K with an interval of 200 K, compared with harmonic ones for CuP_2 .

^{*}Published in New Journal of Chemistry.

[†]Un-Gi Jong, Email: ug.jong@ryongnamsan.edu.kp

[‡]Chol-Jun Yu, Email: cj.yu@ryongnamsan.edu.kp

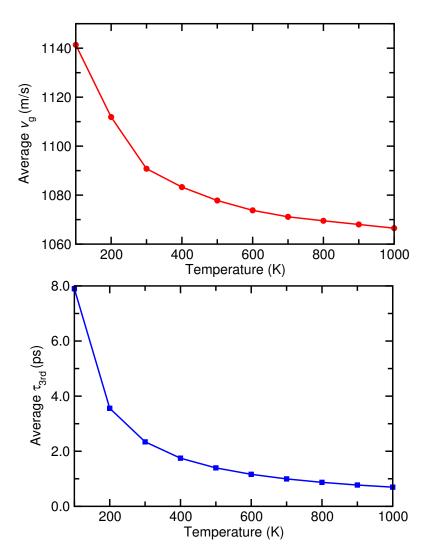


Figure S3. Average phonon lifetime τ_{rd} and group velocity v_g at temperatures from 100 to 1000 K with an interval of 100 K calculated with BTE+SCP method for CuP₂.

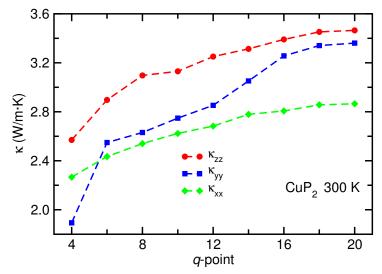


Figure S4. Convergence test for lattice thermal conductivity of CuP₂ according to the size of q-point mesh.

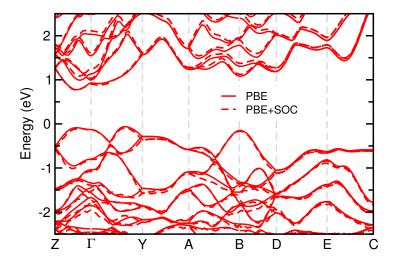


Figure S5. The PBE-calculated electronic band structures with and without the spin-orbit coupling (SOC) effect for CuP₂.

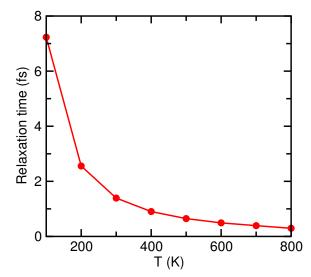


Figure S6. Relaxation time of electron as a function of temperature for CuP_2 .

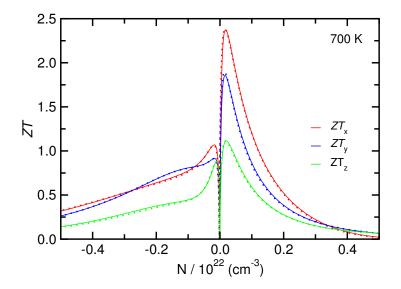


Figure S7. The PBE-calculated figure of merit ZT using k-point meshes of $24 \times 24 \times 16$ (solid) and $20 \times 20 \times 12$ (dotted) with relaxation time of 10^{-14} s for CuP₂.

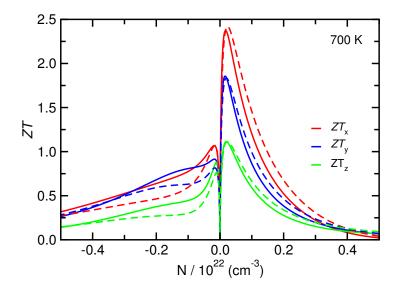


Figure S8. The figure of merit ZT calculated with the PBE (solid) and mBJ (dashed) functionals setting relaxation time to 10^{-14} s for CuP₂.