Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

ZIF-67 - Derived Flower-like ZnIn₂S₄@CoS₂ Heterostructure for

Photocatalytic Hydrogen Production

Xiuqing Xi^{#a}, Qi Dang^{#a}, Ganyu Wang^a, Wenqian Chen^{*a}, Liang Tang^{*a}

a. Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
*Corresponding author. E-mail addresses: wenqianchen@shu.edu.cn (W. Q. Chen), tang1liang@shu.edu.cn (L. Tang)
Equal contribution

Figure S1. Enlarged XRD patterns of ZC-x at 2θ = (a) 31-35°, (b) 35-38°, and (c) 53-58°.

Figure S2. (a) SEM image and (b-f) element mappings of ZC-5.

Figure S3. Brunauer-Emmet-Teller (BET) surface area of synthesized sample.

	S _{BET} (m²/g)	Mean pore size (nm) Pore volume (cm ³	
ZnIn ₂ S ₄	75.7972	13.8633	0.2627
ZC-1	64.3987	16.5097	0.2658
ZC-3	57.8564	16.5461	0.2489
ZC-5	54.4725	16.2504	0.2213
ZC-7	51.5461	15.3542	0.2579
ZC-10	47.5694	16.1215	0.2148

Table S1. BET surface area, mean pore size and pore volume of synthesized sample.

Figure S4. (a) Photocurrent response of $ZnIn_2S_4$ (grey), CoS_2 (brown), and ZC-5 (green) under the irradiation of simulated sunlight; (b) EIS curves of $ZnIn_2S_4$ (grey) and ZC-5 (green).

Testing ion	Concentration of the testing ion in an aqueous solution (mg/L)			
Co ²⁺	0.03524			
Zn ²⁺	0.08142			

Table S2. ICP result for leaching amount of Zn^{2+} and Co^{2+}

Catalyst	Light source (W/nm)	Sacrificial reagent	Cocatalyst	H ₂ evolution rate (μmol/h/g)	Reference
$ZnIn_2S_4@CoS_2$	300 Xe ≥ 350	TEOA	-	879	This work
ZnS- ZnIn₂S₄	400 metal halide > 420	Glucose	Pt	103	Int. J. Hydrogen Energ., 2010 , 35, 7116.
Cu- ZnIn ₂ S ₄	300 Xe > 430	Na₂SO₃/Na₂S	Pt	757.5	<i>J. Phys.</i> <i>Chem. C,</i> 2008 , 112, 41, 16148.
RGO/ ZnIn ₂ S ₄	300 Xe > 420	lactic acid	-	817	ACS Appl. Mater. Interfaces 2014 , 6, 3483.
ZnIn ₂ S ₄ /Fluoropolymer	350 Xe > 250	Na ₂ SO ₃ /Na ₂ S	-	398	Int. J. Hydrogen Energ., 2010 , 35, 6525.
ZnIn ₂ S ₄ -MoS ₂	150 Xe	Na ₂ SO ₃ /Na ₂ S	-	111.6	Catal. Sci. Technol., 2020 , 10, 2838.

Table S3 Summary of reported $ZnIn_2S_4$ -based catalysts for photocatalytic hydrogen evolution.