Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Strong Nanozymatic Activity of Thiocyanate Capped Gold Nanoparticles: An Enzyme-Nanozyme Cascade Reaction Based Dual Mode Ethanol Detection in Saliva

Syed Rahin Ahmed, Greter Amelia Ortega, Satish Kumar, Seshasai Srinivasan^{*} and Amin Reza Rajabzadeh^{*}

School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, Canada L8S 4L7

**E-mail address:* SS: <u>ssriniv@mcmaster.ca</u>, ARR: <u>rajaba@mcmaster.ca</u>

Figure S1: The nanozymatic activity of TC-Au NPs at different (A) pH values (Reaction conditions: 5 mM TMB and 10 mM H_2O_2); (B) Reaction times (Reaction conditions: 5-mM TMB, 10-mM H_2O_2 and pH 7.5 at 25°C); (C) Varied H_2O_2 concentrations with a fixed TMB concentration of 5 mM; and (D) Varied TMB concentrations with a fixed H_2O_2 concentration of 10 mM. The reaction conditions were fixed at pH 7.5 and 25°C. The error bars denote the standard deviation (n=3).

Figure S2: Nanozymatic activity study of TC-Au NPs: (A) TA based test of hydroxyl radical's formation by TC-Au NPs and (B) Calibration curve of PL intensity vs different volume of TC-Au NPs.

Figure S3: The specificity of EtOH detection in the presence different mixture solutions.

Figure S4: Confirmation of electrodes modification with TC-Au NPs: (A) absorbance of TC-Au NPs modified electrode; (B) nanozymatic nature of TC-Au NPs modified electrode in the presence of TMB-H₂O₂.

Figure S5: Electrochemical responses of TC-Au NPs.

Figure S6: Electrochemical study of analytical performance: (A) CV of EtOH detection using reduction current of TMB within 1 min; (B) CV of EtOH detection using reduction current of TMB within 2 min; (C) CV of EtOH detection using reduction current of TMB within 3 min; (D) CV of EtOH detection using reduction current of TMB within 4 min; (E) CV of EtOH detection using reduction current of TMB within 4 min; (E) CV of EtOH detection using reduction current of current vs EtOH at different concentration and time.

Figure S7: Electrochemical study of TC-Au NPs performance: (A) CV of bare PBS buffer; (B) CV of PBS buffer and AOx; (C) CV of PBS buffer, AOx, and TC-Au NPs; and (D) CV of PBS buffer, AOx, TC-Au NPs, and H₂O₂.

Metal NPs	Enzyme-mimic	Ref. No
Au	POD	1
Au	OXD	2
Au	CAT	3
Au	SOD	4
Ag	POD	5
Ag	OXD	6
Ag	CAT	7
Cu	POD	8
Pt	POD	9
Pt	OXD	10
Pt	CAT	11
Ru	POD	12
Ru	OXD	12
Ir	POD-like activity	13
Ir	OXD-like activity	14
Ir	CAT	15
Pd	POD	16
Pd	OXD	17
Pd	CAT 18	

Table S1. The enzyme-like activity of single-metal nanoparticles

Table S2. The enzyme-like activity of hybrid nanomaterials

Hybrid nanomaterials	Enzyme-mimic activity	Ref. No
Au-Ag	POD	19
Au-Pt	POD	20
Au-Pd	POD	21
Pt-Pd	POD	22
Pt-Ru	Multiple	23
Pt-Co	OXD	24
Pd-Ir	POD	25
Pt-Cu	POD	26
Graphene-Pt	OXD	27
Ni-Pd	POD	28
Ce-MOF	OXD	29
MOF (Ce/Fe)	POD	30
Au-MOF	OXD	31

Nanozymes	Substrate	$K_{\rm m}$ (mM)	Kcat (s ⁻¹)	Ref. No
Cysteamine-Au NPs	TMB	0.052	0.118x10 ³	32
	H_2O_2	213	0.310×10^{3}	
Citrate -Au NPs	TMB	0.049	0.527×10^{3}	32
	H_2O_2	151	1.05×10^{3}	
Polyvinylpyrrolidone -Au	TMB	0.055	1.22×10^{3}	32
NPs	H_2O_2	96	1.91x10 ³	
Gum Arabic -Au NPs	TMB	0.094	1.82×10^{3}	32
	H_2O_2	84	2.23×10^{3}	
TC-Au NPs	TMB	0.1	2.29x10 ⁴	This study
	H_2O_2	343.04	2.4×10^{3}	

Table S3. Comparison study of Michaelis-Menten constant (Km) of different capping agents of AuNPs.

References

- Jv Y, Li B, Cao R. 2010. Positively-Charged Gold Nanoparticles as Peroxidiase Mimic and Their Application in Hydrogen Peroxide and Glucose Detection. *Chem. Commun.* 46(42):8017–19
- (2) Zhang H, Liang X, Han L, Li F. 2018. Non-Naked" Gold with Glucose Oxidase-Like Activity: A Nanozyme for Tandem Catalysis. *Small* 4(44):e1803256
- (3) Wang F, Ju E, Guan Y, Ren J, Qu X. 2017. Light-Mediated Reversible Modulation of ROS Level in Living Cells by Using an Activity-Controllable Nanozyme. *Small* 13(25): 1603051

- (4) Sharifi M, Faryabi K, Talaei AJ, Shekha MS, Ale-Ebrahim M, et al. 2020. Antioxidant Properties of Gold Nanozyme: A Review. *J. Mol. Liq.* 297(1):112004
- (5) Jiang H, Chen Z, Cao H, Huang Y. 2012. Peroxidase-like Activity of Chitosan Stabilized Silver Nanoparticles for Visual and Colorimetric Detection of Glucose. *Analyst* 137(23):5560–64
- (6) Song H, Li Z, Peng Y, Li X, Xu X, et al. 2019. Enzyme-Triggered in Situ Formation of Ag Nanoparticles with Oxidase-Mimicking Activity for Amplified Detection of Alkaline Phosphatase Activity. *Analyst* 144(7):2416–22
- (7) Li J, Liu W, Wu X, Gao X. 2015. Mechanism of PH-Switchable Peroxidase and Catalase-like Activities of Gold, Silver. Platinum and Palladium. *Biomaterials* 48:37–44
- (8) Hu L, Yuan Y, Zhang L, Zhao J, Majeed S, Xu G. 2013. Copper Nanoclusters as Peroxidase Mimetics and Their Applications to H₂O₂ and Glucose Detection. Anal. Chim. Acta. 762:83–86
- (9) Cui Y, Lai X, Liang B, Liang Y, Sun H, Wang L. 2020. Polyethyleneimine-Stabilized Platinum Nanoparticles as Peroxidase Mimic for Colorimetric Detection of Glucose. ACS Omega 5(12):6800–6808
- (10) He SB, Yang L, Lin XL, Chen LM, Peng HP, et al. 2020. Heparin-Platinum Nanozymes with Enhanced Oxidase-like Activity for the Colorimetric Sensing of Isoniazid. *Talanta* 211:120707
- (11) Fan J, Yin JJ, Ning B, Wu X, Hu Y, et al. 2011. Direct Evidence for Catalase and Peroxidase Activities of Ferritin-Platinum Nanoparticles. *Biomaterials* 32(6):1611–18
- (12) Cao GJ, Jiang X, Zhang H, Croley TR, Yin JJ. 2017. Mimicking Horseradish Peroxidase and Oxidase Using Ruthenium Nanomaterials. *RSC Adv.* 7(82):52210–17
- (13) Cui M, Zhou J, Zhao Y, Song Q. 2017. Facile Synthesis of Iridium Nanoparticles with Superior Peroxidase-like Activity for Colorimetric Determination of H₂O₂ and Xanthine. Sens. Actuators B Chem. 243:203–10
- (14) Cui M, Zhao Y, Wang C, Song Q. 2017. The Oxidase-like Activity of Iridium Nanoparticles, and Their Application to Colorimetric Determination of Dissolved Oxygen. *Microchim. Acta.* 184(9):3113–19
- (15) Wang Q, Hong G, Liu Y, Hao J, Liu S. 2020. Dual Enzyme-like Activity of Iridium Nanoparticles and Their Applications for the Detection of Glucose and Glutathione. *RSC* Adv. 10(42):25209–13
- (16) Zhou N, Zou S, Zou L, Shen R, Zhou Y, Ling L. 2019. Peroxidase-like Activity of Palladium Nanoparticles on Hydrogen-Bond Supramolecular Structures over a Broader Ph Range and Their Application in Glucose Sensing. *Can. J. Chem.* 97(4):317–23

- (17) Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X. 2015. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. J. Am. Chem. Soc. 137(50):15882–91
- (18) Ge C, Fang G, Shen X, Chong Y, Wamer WG, et al. 2016. Facet Energy versus Enzymelike Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano 10(11):10436–45
- (19) Mohamad A, Keasberry NA, Ahmed MU. 2018. Enzyme-Free Gold-Silver Core-Shell Nanozyme Immunosensor for the Detection of Haptoglobin. *Anal. Sci.* 34(11):1257–63
- (20) Gao Z, Ye H, Tang D, Tao J, Habibi S, et al. 2017. Platinum-Decorated Gold Nanoparticles with Dual Functionalities for Ultrasensitive Colorimetric in Vitro Diagnostics. *Nano Lett.* 17(9):5572–79
- (21) Singh S, Tripathi P, Kumar N, Nara S. 2017. Colorimetric Sensing of Malathion Using Palladium-Gold Bimetallic Nanozyme. *Biosens. Bioelectron.* 92:280–86
- (22) Fan C, Liu J, Zhao H, Li L, Liu M, et al. 2019. Molecular Imprinting on PtPd Nanoflowers for Selective Recognition and Determination of Hydrogen Peroxide and Glucose. RSC Adv. 9(58):33678–83
- (23) Liu C, Yan Y, Zhang X, Mao Y, Ren X, et al. 2020. Regulating the Pro- and Anti-Oxidant Capabilities of Bimetallic Nanozymes for the Detection of Fe²⁺ and Protection of: Monascus Pigments. *Nanoscale* 12(5):3068–75
- (24) Cai S, Qi C, Li Y, Han Q, Yang R, Wang C. 2016. PtCo Bimetallic Nanoparticles with High Oxidase-like Catalytic Activity and Their Applications for Magnetic-Enhanced Colorimetric Biosensing. J. Mater. Chem. B 4(10):1869–77
- (25) Xi Z, Gao W, Xia X. 2020. Size Effect in Pd–Ir Core-Shell Nanoparticles as Nanozymes. *Chem. bio. chem.* 21(17):2440–44
- (26) Lu Y, Ye W, Yang Q, Yu J, Wang Q, et al. 2016. Three-Dimensional Hierarchical Porous PtCu Dendrites: A Highly Efficient Peroxidase Nanozyme for Colorimetric Detection of H₂O₂. Sens. Actuators B Chem. 230:721–30
- (27) Qiu N, Liu Y, Guo R. 2020. Electrodeposition-Assisted Rapid Preparation of Pt Nanocluster/3D Graphene Hybrid Nanozymes with Outstanding Multiple Oxidase-Like Activity for Distinguishing Colorimetric Determination of Dihydroxybenzene Isomers. ACS Appl. Mater. Interfaces 12(13):15553–61
- (28) Wang Q, Zhang L, Shang C, Zhang Z, Dong S. 2016. Triple-Enzyme Mimetic Activity of Nickel-Palladium Hollow Nanoparticles and Their Application in Colorimetric Biosensing of Glucose. *Chem. Commun.* 52(31):5410–13

- (29) Xiong Y, Chen S, Ye F, Su L, Zhang C, et al. 2015. Synthesis of a Mixed Valence State Ce-MOF as an Oxidase Mimetic for the Colorimetric Detection of Biothiols. *Chem. Commun.* 51(22):4635–38
- (30) Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F. 2017. A Bimetallic (Co/2Fe) Metal-Organic Framework with Oxidase and Peroxidase Mimicking Activity for Colorimetric Detection of Hydrogen Peroxide. *Microchim. Acta.* 184(12):4629–35
- (31) Huang Y, Zhao M, Han S, Lai Z, Yang J, et al. 2017. Growth of Au Nanoparticles on 2D Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. *Adv. Mater.* 29(32): 1700102
- (32) Liu C, Chen K, Su C, Yu P, Lee Po. 2019. Revealing the Active Site of Gold Nanoparticles for the Peroxidase-Like Activity: The Determination of Surface Accessibility. *Catalysts* 9: 517.