Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

SUPPORTING INFORMATION

Synthesis of Indeno[de]Isochromene Derivatives from Arylvinyl Epoxides and Carbonyl Compounds via Tandem Nazarov and oxa-Pictet-Spengler Cyclizations

NagamSatish,^{a,b} Siruvuri Krishnam Raju,^{a,b} Jagadeesh Babu Nanubolu^c and Gangarajula Sudhakar*^{a,b}

^aDepartment of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad500007, Telangana (India), and

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, UP (India) and

^cDepartment of Analytical & Structural Chemistry, CSIR-IICT, Hyderabad-500007, Telangana (India)

Email: gsudhakar@iict.res.in

Table of contents

S. No	Content	Page
1	General information	2
2	Experimental Procedures	.3-30
3	X-ray Crystallography Information	.31-34
4	¹ H and ¹³ C NMR Spectra	.35-78

1. General information

Reactions were run in oven-dried glassware under nitrogen or argon atmosphere. Chemicals and solvents were either purchased from commercially suppliers or purified by standard techniques. Reactions were monitored by thin-layer chromatography (TLC) using Merck silica gel 60 F₂₅₄ precoated plates(20×20 cm) were visualized by exposure to ultraviolet light and staining with anisaldehyde, phosphomolybdic acid staining solutions followed by heating on hot plate. Flash chromatography (TELEDYNE ISCO combi flash Rf+)was carried out using silica gel (230-400 mesh). ¹H and¹³C NMR spectra were recorded (500 MHz, 400 MHz, 300MHz, and CDCl₃) as solvent at ambient temperature. ¹H and ¹³C NMR Chemical shifts are reported in ppm (δ) values relative to the residual solvent peak. The residual solvent signals were used as reference and the chemical shift were converted to the TMS scale (CDCl₃: $\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.00 ppm).¹H NMR data is recorded as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, dt = doublet of triplet, dq = doublet of quartet, tt = triplet of triplet, ddd = ddubletdoublet of doublet, brs = broad singlet, brd = broad doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift.Infrared spectrometric data were recorded on Bruker FT-IR spectrometer. Mass spectra were recorded for ESI and are given in mass units (m/z). High resolution mass spectra (HRMS) [ESI+] were obtained using either a TOF or a double focusing spectrometer. Melting points were determined using Cintex melting point apparatus. Single crystal X-ray data for the compounds were collected on Bruker Smart Apex CCD diffractometer and Bruker D8 QUEST.

2. Experimental procedure

Synthesis of 3a from 2a:

To a stirred solution of 2a (100 mg, 0.3086 mmol, 1.0 equiv) and paraformaldehyde (32 mg, 1.0802 mmol, 3.5 equiv) in dry CH₂Cl₂ (3mL) was added BF₃.OEt₂ (0.96 mL, 0.7716 mmol, 2.5 equiv) at room temperature under inert atmosphere. After completing the starting material (monitored the reaction using TLC), the reaction was quenched with H₂O or saturated NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with aq NaCl, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified using silica gel column chromatography (EtOAc/ hexanes) to give the **3a** (97 mg, 93%) product colorless oil.

General procedure for the synthesis of indeno[de]isochromene derivatives 3a-3i:

To a stirred solution of 1^{9a} (100 mg, 0.308 mmol, 1.0 equiv) and paraformaldehyde (13.8 mg, 0.463 mmol, 1.5 equiv) in dry CH₂Cl₂ (3 mL) was added BF₃.OEt₂ (7.4 µL, 0.061 mmol, 0.2 equiv) at 0 °C and stirred at the same temperature under inert atmosphere. After completing of the starting material, the reaction was quenched with H₂O or saturated NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with aq NaCl, dried over Na₂SO₄, filtered, and

concentrated under reduced pressure. The crude product was purified by using silica gel column chromatography (EtOAc/ hexanes) to give the desired product **3**.

6,8-Dimethoxy-4,5,5-trimethyl-3-phenyl-3,5-dihydro-1H-cyclopenta[de]isochromene (3a):

Yield: 92 mg, (89%); colorless oil; $R_f = 0.5$ (15% EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 6.21 (s, 1H), 5.70 (s, 1H), 4.68 (d, J = 14.6 Hz, 1H), 4.50 (d, J = 14.6 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 1.54 (d, J = 1.0 Hz, 3H), 1.36 (s, 3H), 1.33 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 154.9, 154.4, 147.6, 140.2, 138.9, 128.5, 128.4, 128.1, 128.1, 109.9, 91.9, 75.5, 59.3, 55.7, 55.5, 52.0, 22.1, 21.5, 9.6; IR (Neat): ν_{max} 2956, 2926, 2852, 1727, 1606, 1502, 1451, 1435, 1332, 1284, 1210, 1139, 1084, 1031, 1008, 699; HRMS (ESI): calcd for C₂₂H₂₅O₃ (M+H)⁺ 337.1798, found 337.1801.

6,8-Dimethoxy-4,5,5-trimethyl-3-(p-tolyl)-3,5-dihydro-1H-cyclopenta[de]isochromene (3b):

Yield: 92 mg, (89%); colorless solide (m. p. = 148 - 150 °C); R_f = 0.5 (15% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.20 (s, 1H), 5.67 (s, 1H), 4.66 (d, J = 14.6 Hz, 1H), 4.47 (d, J = 14.6 Hz, 1H), 3.87 (s, 3H),

3.79 (s, 3H), 2.34 (s, 3H), 1.55 (d, J = 0.9 Hz, 3H), 1.35 (s, 3H), 1.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 154.4, 147.4, 140.3, 137.8, 135.8, 129.1, 128.3, 128.3, 128.2, 110.0, 91.9, 75.3, 59.0, 55.7, 55.5, 51.9, 22.1, 21.5, 21.2, 9.6; **IR** (Neat): v_{max} 2934, 2839, 1718, 1599, 1493, 1451, 1336, 1289, 1208, 1153, 1119, 1019, 748, 698; **HRMS** (ESI): calcd for C₂₃H₂₇O₃ (M+H)⁺ 351.1954, found 351.1941.

6,8-Dimethoxy-4,5,5-trimethyl-3-(p-tolyl)-3,5-dihydro-1H-cyclopenta[de]isochromene (3c):

Yield: 101 mg, (87%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz,

CDCl₃) δ 7.25 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.20 (s, 1H), 5.68 (s, 1H), 4.66 (d, *J* = 14.6 Hz, 1H), 4.47 (d, *J* = 14.6 Hz, 1H), 3.88 (s, 3H), 3.79 (s, 3H), 2.63 (q, *J* = 7.6 Hz, 2H), 1.56 (d, *J* = 0.9 Hz, 3H), 1.36 (s, 3H), 1.32 (s, 3H), 1.22 (t, *J* = 7.6 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 173.1, 172.5, 154.9, 154.4, 147.4, 144.1, 128.4, 128.3, 128.2, 127.9, 110.0, 91.9, 75.2, 59.0, 55.7, 55.5, 51.9, 28.6, 22.2, 21.5, 15.5, 9.7; IR (Neat): v_{max} 2959, 2925, 2853, 1726, 1608, 1503, 1458, 1435, 1342, 1284, 1210, 1135, 1082, 1031, 1008, 822, 799; HRMS (ESI): calcd for C₂₄H₂₉O₃ (M+H)⁺ 365.2111, found 365.2118.

3-(4-Butylphenyl)-6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-

cyclopenta[de]isochromene (3d):

Yield: 119 mg, (89%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz,

CDCl₃) δ 7.24 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.20 (s, 1H), 5.67 (s, 1H), 4.66 (d, *J* = 14.5 Hz, 1H), 4.48 (d, *J* = 14.5 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H), 2.62 – 2.55 (m, 2H), 2.14 (s, 1H), 1.65 – 1.56 (m, 3H), 1.55 (d, *J* = 0.8 Hz,

3H), 1.35 (s, 3H), 1.32 (s, 3H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 154.4, 147.4, 142.8, 140.3, 136.0, 129.2, 128.8, 128.5, 128.3, 110.0, 91.9, 75.3, 59.1, 55.7, 55.5, 51.9, 50.7, 35.4, 33.6, 22.3, 22.2, 21.5, 13.9; **IR** (Neat): v_{max} 2956, 2927, 2856, 1715, 1608, 1503, 1464, 1435, 1342, 1283, 1210, 1135, 1082, 1031, 1008,799; **HRMS** (ESI): calcd for C₂₆H₃₃O₃ (M+H)⁺ 393.2424, found 393.2416.

3-(4-Isobutylphenyl)-6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-

yclopenta[de]isochromene (3e):

Yield: 93 mg, (82%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹**H NMR (500 MHz, CDCl₃)** δ 7.24 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 6.21 (s, 1H), 5.66 (s, 1H), 4.67 (d, J = 14.5

136.1, 129.2, 128.4, 128.2, 128.1, 110.0, 91.9, 75.4, 59.2, 55.7, 55.5, 51.9, 45.1, 30.2, 22.3, 22.1,
21.5, 9.6; **IR** (Neat): v_{max} 2955, 2924, 2852, 1727, 1608, 1502, 1461, 1435, 1364, 1342, 1328,
1283, 1209, 1137, 1082, 1032, 1008, 795; **HRMS** (ESI): calcd for C₂₆H₃₃O₃ (M+H)⁺ 393.2424,
found 393.2421.

3-(4-Isopropylphenyl)-6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-

cyclopenta[de]isochromene (3f):

Yield: 92 mg, (81%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃)

δ 7.25 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.1 Hz, 2H), 6.20 (s, 1H), 5.69 (s, 1H), 4.66 (d, J = 14.6 Hz, 1H), 4.47 (d, J = 14.6 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H), 2.93 – 2.84 (m, 1H), 1.58 (d, J = 0.7Hz, 3H), 1.36 (s, 3H), 1.33 (s, 3H), 1.23 (d, J = 6.8 Hz, 6H); ¹³C

NMR (100 MHz, CDCl₃) δ 154.9, 154.4, 148.7, 147.4, 140.3, 136.1, 128.3, 126.5, 110.5, 110.0, 91.9, 87.7, 75.2, 58.9, 55.7, 55.5, 51.9, 33.8, 24.0, 23.9, 22.2, 21.5, 9.7; IR (Neat): ν_{max} 2958, 2924, 2853, 1727, 1608, 1502, 1461, 1342, 1283, 1209, 1134, 1081, 1031, 821; HRMS (ESI): calcd for C₂₅H₃₁O₃ (M+H)⁺ 379.2267, found 379.2278.

3-(4-(tert-Butyl)phenyl)-6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-

cyclopenta[de]isochromene (3g):

Yield: 88 mg, (85%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃)

 δ 7.34 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 6.20 (s, 1H), 5.70 (s, 1H), 4.66 (d, J = 14.5 Hz, 1H), 4.46 (d, J = 14.5 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H), 1.59 (d, J = 0.9 Hz, 3H), 1.37 (s, 3H), 1.33 (s, 3H), 1.30 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.9,

154.4, 150.9, 147.4, 140.3, 135.6, 128.2, 128.0, 125.4, 110.0, 91.9, 75.0, 58.8, 55.7, 55.5, 51.9, 34.5, 31.3, 29.7, 22.2, 21.5, 9.7; **IR** (Neat): v_{max} 2957, 2923, 2853, 1730, 1608, 1503, 1461, 1435, 1363, 1343, 1284, 1210, 1135, 1081, 1032; **HRMS** (ESI): calcd for $C_{26}H_{33}O_3$ (M+H)⁺ 393.2424, found 393.2415.

3-(4-Fluorophenyl)-6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-

cyclopenta[de]isochromene(3h):

Yield: 115 mg, (87%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (400 MHz,

CDCl₃) δ 7.32 (dd, J = 8.7, 5.5 Hz, 2H), 7.02 (t, J = 8.7 Hz, 2H), 6.21 (s, 1H), 5.66 (s, 1H), 4.67 (d, J = 14.6 Hz, 1H), 4.48 (d, J = 14.6 Hz, 1H), 3.88 (s, 3H), 3.81 (s, 3H), 1.53 (d, J = 1.0 Hz, 3H), 1.35 (s, 3H), 1.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.6, 161.6, 155.0, 154.5, 147.7, 140.0, 134.8, 130.1(d, *J* = 8.1 Hz), 128.1(d, *J* = 4.6 Hz), 115.4, 115.2, 109.8, 91.9, 74.9, 59.3, 55.7, 55.5, 52.0, 29.7, 22.1, 21.5, 9.6; **IR** (Neat): v_{max} 2955, 2925, 2852, 1731, 1604,

1504, 1461, 1343, 1327, 1284, 1210, 1156, 1142, 1081, 1031, 1009, 828,798; **HRMS** (ESI): calcd for C₂₂H₂₄FO₃ (M+H)⁺ 355.1704, found 355.1696.

3-([1,1'-Biphenyl]-4-yl)-6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-

cyclopenta[de]isochromene (3i):

Yield: 110 mg, (86%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (400 MHz,

CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.46 – 7.39 (m, 4H), 7.36 – 7.31 (m, 1H), 6.22 (s, 1H), 5.75 (s, 1H), 4.70 (d, *J* = 14.6 Hz, 1H), 4.53 (d, *J* = 14.6 Hz, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 1.60 (d, *J* = 0.9 Hz, 3H), 1.38 (s, 3H), 1.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃)

δ 155.0, 154.5, 147.7, 140.9, 140.8, 140.2, 137.9, 128.8, 128.7, 128.2, 128.1, 127.2, 127.1, 109.9, 91.9, 75.1, 59.2, 55.7, 55.5, 52.0, 22.2, 21.5, 9.7; **IR** (Neat): *ν_{max}* 2957, 2924, 2852, 1726, 1605, 1502, 1460, 1434, 1343, 1284, 1209, 1135, 1081, 1031, 1007, 763, 697; **HRMS** (ESI): calcd for C₂₈H₂₉O₃ (M+H)⁺413.2111, found 413.2099.

General procedure for the Synthesis of 2-(3, 5-dimethoxyphenyl)-2-(3-methylbut-2-en-2yl)oxirane (s1b)^{9f}

Me₃SI (3.48 g, 17.094 mmol, 8.0 equiv) and *n*-BuLi (1.6 M in hexanes, 8.6 mL, 13.888 mmol, 6.5 equiv) were added sequentially to THF (149 mL) at 0 °C, and theresulting pale yellow solution was stirred for 2 min at 0 °C. A solution of S_1 (500 mg, 2.136 mmol, 1.0 equiv) in THF (43 mL) at 0 °C was then added dropwise via cannulation over 10 min, and the resulting mixture was allowed to stir for an additional 10 min at 0 °C. Upon completion, the reaction contents were quenched by the addition of water (20 mL) and extracted with EtOAc (3 × 10 mL). The

combined organic extracts were then washed with water (10 mL) and brine (10 mL), dried (Na₂SO₄), filtered, and concentrated. The resultant crude oil (**s1b**) was used in the next step without purification.

Synthesis of (E)-2-(but-2-en-2-yl)-2-(3,5-imethoxyphenyl)oxirane (s1c)^{9f}

s1c was synthesized following the procedure used for s1b. Yield of s1c (101mg, 95%); colorless oil from S₂ (100mg, 0.4545 mmol); $R_f= 0.7$ (10% EtOAc:hexanes); ¹H NMR (500 MHz, CDCl₃) δ 6.52 (d, J = 5.3 Hz, 2H), 6.38 (d, J = 5.3 Hz, 1H), 5.74 – 5.57 (m, 1H), 3.78 (s, 6H), 3.21 – 3.19 (m, 1H), 3.02 (d, J = 6.0 Hz, 0.37H), 2.88 (d, J = 6.0 Hz, 0.67H), 1.78 – 1.63 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 160.7, 141.9, 141.4, 133.5, 133.3, 124.9, 124.8, 104.5, 103.6, 99.6, 99.5, 64.6, 59.7, 59.2, 56.3, 55.3, 20.1, 14.5, 13.3, 13.1; IR(Neat): v_{max} 2929, 1598, 1461, 145, 1355, 1307, 1213, 1129, 1018, 935, 804; HRMS (ESI): calcd for C₁₄H₁₉O₃(M+H)⁺ 235.1328, found 235.1314.

Yield: 125 mg, (92%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.19 (m, 5H), 6.23 (s, 1H), 6.00 (s, 1H), 4.49 (d, J = 14.7 Hz, 1H), 4.23 (d, J = 14.7 Hz, 1H), 3.89 (s, 3H), 3.72 (s, 3H), 1.75 (d, J = 0.9 Hz, 3H), 1.31 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) & 155.7, 154.8, 145.1, 140.3, 139.9, 128.8, 128.3, 128.1, 127.6, 126.7, 110.7, 91.7, 72.5, 58.8, 55.8, 55.4, 51.8, 22.0, 21.4, 9.5; **IR** (Neat): *v_{max}* 2957, 2926, 2839, 1653, 1607, 1493, 1450, 1435, 1358, 1334, 1283, 1210, 1139, 1083, 1005, 860, 801, 699; **HRMS** (ESI): calcd for C₂₂H₂₅O₃ (M+H)⁺ 337.1798, found 337.1799.

6,8-Dimethoxy-4,5-dimethyl-1-phenyl-3,5-dihydro-1H-cyclopenta[de]isochromene (3k):

Yield: 122 mg, (88%); colorless oil; (*dr* 1:0.05, based on ¹H NMR); $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.22 (m, 5H), 6.26 (s, 1H), 6.02 (s, 1H), 4.51 (d, J = 14.7 Hz, 1H), 4.23 (d, J = 14.7Hz, 1H), 3.91 (s, 3H), 3.73 (s, 3H), 3.40 (tt, J = 7.5, 3.7 Hz, 1H),

1.89 – 1.85 (m, 3H), 1.34 (d, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 155.0, 141.9, 140.6, 139.8, 128.8, 128.1, 127.6, 123.9, 110.9, 92.0, 72.4, 58.8, 55.8, 55.6, 46.9, 14.1, 11.9; **IR** (Neat): v_{max} 2931, 2838, 1723, 1605, 1498, 1460, 1343, 1290, 1209, 1158, 1120, 1077, 747, 639; **HRMS** (ESI): calcd for C₂₁H₂₃O₃ (M+H)⁺ 323.1641, found 323.1641.

1-(3,5-Dimethoxyphenyl)-6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-

cyclopenta[de]isochromene (31):

Yield: 142 mg, (89%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (400 MHz,

CDCl₃) δ 6.43 (dd, *J* = 2.3, 0.5 Hz, 2H), 6.37 (t, *J* = 2.3 Hz, 1H), 6.22 (s, 1H), 5.93 (s, 1H), 4.49 (d, *J* = 14.7Hz, 1H), 4.27 (d, *J* = 14.7 Hz, 1H), 3.89 (s, 3H), 3.75 (s, 6H), 3.74 (s, 3H), 1.74 (d, *J* = 1.0 Hz, 3H), 1.30 (s, 3H), 1.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

160.5, 155.7, 154.8, 145.0, 142.5, 140.1, 128.3, 126.7, 110.5, 107.0, 99.4, 91.9, 72.3, 58.9, 55.8,

55.4, 55.3, 51.8, 21.9, 21.4, 9.5; **IR** (Neat): v_{max} 2956, 2924, 2840, 1604, 1498, 1460, 1429, 1355, 1283, 1205, 1154, 1067, 1023, 836; **HRMS** (ESI): calcd for C₂₄H₂₉O₃ (M+H)⁺ 397.2009, found 397.2012.

3-(6,8-Dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-cyclopenta[de]isochromen-1-

yl)benzonitrile (3m):

Yield: 131 mg, (90%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz,

CDCl₃) δ 7.63 – 7.54 (m, 2H), 7.49 – 7.47 (m, 1H), 7.43 (t, J = 7.8 Hz, 1H), 6.24 (s, 1H), 5.95 (s, 1H), 4.53 (d, J = 14.7 Hz, 1H), 4.18 (d, J = 14.7 Hz, 1H), 3.91 (s, 3H), 3.73 (s, 3H), 1.76 (d, *J* = 0.8 Hz, 3H), 1.31 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 155.2, 145.9, 141.8, 140.1, 133.3, 132.3, 131.3, 128.9, 128.4, 125.9, 119.1, 112.1, 109.1, 91.7, 71.7, 59.3, 55.6,

55.4, 51.9, 21.8, 21.4, 9.6; IR (Neat): v_{max} 2958, 2925, 2851, 2228, 1605, 1497, 1460, 1435, 1357, 1283, 1210, 1137, 1084, 1026, 803; **HRMS** (ESI): calcd for C₂₃H₂₄O₃N(M+H)⁺ 362.1750, found 362.1738.

General procedure for the synthesis of divinyl epoxyester from arylvinyl ketone:^{9f}

A solution of ethyl bromoacetate (0.63 mL, 5.470 mmol, 4.0 equiv) in dry THF (7 mL) was cooled to -78 °C under N2 atmosphere before drop-wise addition of LiHMDS (5.47 mL, 5.470

mmol, 1M solution in THF, 4.0 equiv). After 30 min, S_1 (320 mg, 1.367 mmol, 1.0 equiv) in dry THF (4 mL) was added drop-wise over 5 min and stirred for 15-20 min at -78 °C. The temperature was raised to rt and stirred for 15 min. After completion of the starting material, the reaction was quenched with H₂O and extracted with EtOAc. The organic layer was washed with aq NaCl, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified using basic Al₂O₃ flash column chromatography (EtOAc/hexane) to give **s1d** as (420 mg, 96%) a colorless oil; R_f = 0.6 (15% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 6.59 (d, J = 2.3 Hz, 2H), 6.48 (d, J = 2.3 Hz, 0.47H), 6.41 (t, J = 2.3 Hz, 0.27H), 6.37 (t, J = 2.3 Hz, 1H), 4.02 (q, J = 7.1 Hz, 2H), 3.86 (s, 1H), 3.78 (s, 1.5H), 3.77 (s, 6H), 2.00 (s, 3H), 1.75 (s, 0.67H), 1.73 (s, 0.72H), 1.72 (s, 3H), 1.68 (s, 3H), 1.25 (t, J = 7.1 Hz, 0.79H), 1.02 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.7, 161.0, 160.3, 137.8, 130.5, 126.8, 105.2, 104.5, 99.9, 67.2, 64.0, 61.1, 61.0, 55.3, 22.1, 22.0, 20.2, 20.0, 14.9, 14.1, 13.9; IR (Neat): v_{max} 2993, 2924, 2857, 2839, 1753, 1727, 1594, 1456, 1426, 1375, 1345, 1333, 1299, 1253, 1201, 1152, 1063, 1028, 848, 694; HRMS (ESI): calcd for C₁₈H₂₅O₅(M+H)⁺ 321.1696, found 321.1690.

Ethyl6,8-dimethoxy-4,5,5-trimethyl-3,5-dihydro-1H-cyclopenta[de]isochromene-3carboxylate (3n):

Yield: 96 mg, (92%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃)

δ 6.20 (s, 1H), 5.31 (s, 1H), 5.14 (d, J = 14.6 Hz, 1H), 4.84 (d, J = 14.6 Hz, 1H), 4.19 (qd, J = 7.1, 1.1 Hz, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 1.91 (d, J = 0.8 Hz, 3H), 1.31 (s, 3H), 1.29 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 154.9, 154.4, 149.5, 137.9,

127.8, 123.6, 108.6, 92.0, 71.6, 61.0, 60.2, 55.7, 55.5, 52.1, 21.7, 21.4, 14.2, 10.0; **IR** (Neat):

ν_{max} 2959, 2927, 2866, 1744, 1649, 1608, 1503, 1452, 1435, 1365, 1347, 1281, 1191, 1091, 1034, 1008, 897, 801; **HRMS** (ESI): calcd for C₁₉H₂₅O₅ (M+H)⁺ 333.1696, found 333.1694.

Ethyl 6,8-dimethoxy-1,1,4,5,5-pentamethyl-3,5-dihydro-1H-cyclopenta[de]isochromene-3carboxylate (30):

Yield: 96 mg, (85%); colorless oil; $R_f = 0.5$ (15% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃)

δ 6.21 (s, 1H), 5.25 (d, J = 1.6 Hz, 1H), 4.39 – 4.20 (m, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 1.77 (d, J = 1.5 Hz, 3H), 1.68 (s, 3H), 1.57 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H), 1.29 (s, 3H), 1.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 155.1, 154.1, 146.8, 138.9, 128.1, 124.5, 117.0,

75.4, 70.1, 61.3, 55.7, 55.3, 51.9, 27.8, 26.3, 21.5, 21.4, 14.1, 9.4; IR (Neat): v_{max} 2962, 2926, 2854, 1754, 1734, 1602, 1491, 1461, 1355, 1307, 1270, 1213, 1177, 1129, 1089, 1018, 935, 804;
HRMS (ESI): calcd for C₁₈H₂₃O₄ (M-C₃H₅O)⁺ 303.1590, found 303.1590.

General procedure for the Synthesis of 2-(3,5-dimethoxyphenyl)-2-(2,6,6trimethylcyclohex-1-en-1-yl)oxirane (s1e)

s1e was synthesized following the procedure used for **s1b**. Yield of **s1e** (1.04 g, 99%); white solid (m. p. = 90 – 92 °C) from **S**₃ (1 g, 3.4722 mmol); R_f = 0.7 (10% EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 6.47 (d, *J* = 2.3 Hz, 2H), 6.35 (t, *J* = 2.3 Hz, 1H), 3.77 (s, 6H), 3.00 (d, *J* = 6.6 Hz, 1H), 2.86 (d, J = 6.6 Hz, 1H), 2.17 – 1.99 (m, 2H), 1.78 (m, 1H), 1.69 (s, 3H), 1.43 (s, 3H), 1.15 (s, 3H), 0.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 144.4, 135.8, 134.7, 133.0, 125.5, 103.6, 98.8, 60.2, 59.7, 55.3, 40.5, 34.8, 31.9, 30.3, 29.2, 29.0, 21.2, 18.9; IR (Neat): v_{max} 2930, 1595, 1458, 1425, 1343, 1200, 1151, 1059, 839, 700; HRMS (ESI): calcd for C₁₉H₂₇O₃ (M+H)⁺ 303.1954, found 303.1946.

4,6-Dimethoxy-6b,10,10-trimethyl-3-phenyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-de]isochromene (3p):

Yield: 126 mg, (98%); white solide (m. p. = 112 - 114 °C); (*dr* 2:1, based on ¹H NMR); R_f = 0.5 (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.22 (m, 5H), 6.26 (s, 1H), 6.00 (s,

1H), 4.92 (d, J = 15 Hz, 0.36H), 4.76 (d, J = 15 Hz, 0.66H), 4.43 (d, J =
15 Hz, 0.366H), 4.35 (d, J = 15 Hz, 0.66H), 3.87 (s, 3H), 3.73 (s, 3H),
2.47 (d, J = 12.8 Hz, 1H), 1.90 (q, J = 13.7 Hz, 1H), 1.64 - 1.53 (m,
2H), 1.46 (s, 3H), 1.26 (s, 3H), 1.18 (s, 1H), 1.15 (s, 3H), 1.08 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 155.4, 155.3, 154.2, 153.9, 153.6, 140.3, 139.8, 130.2, 128.8, 128.7, 128.1, 127.6, 125.4, 125.2, 111.9, 111.2, 92.3, 92.0, 72.4, 71.9, 61.2, 60.6, 55.9, 55.8, 55.4, 53.1, 52.8, 43.3, 43.0, 37.1, 36.9, 35.9, 35.4, 32.9, 32.3, 26.2, 25.9, 21.8, 21.2, 19.4; **IR** (Neat): v_{max} 2993, 2929, 2846, 1606, 1495, 1454, 1208, 1047, 755; **HRMS** (ESI): calcd for C₂₆H₃₁O₃ (M+H)⁺391.2267, found 391.2270.

4,6-Dimethoxy-6b,10,10-trimethyl-3-(p-tolyl)-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-de]isochromene (3q):

Yield: 130 mg, (97%); colorless oil; (*dr* 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.10 (m, 4H), 6.25 (s, 1H), 5.97 (s, 1H), 4.91 (d, *J* = 15 Hz, 0.33H), 4.75 (d, *J* = 15 Hz, 0.66H), 4.37 (t, *J* = 15 Hz, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 2.47 (d, *J* = 13.2 Hz, 1H), 2.33 (s, 3H), 1.89 (m, 1H), 1.55 (m, 2H), 1.45 (s, 3H), 1.25 (s, 3H), 1.17 (s,

1H), 1.14 (s, 3H), 1.07 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 155.3, 154.1, 153.8, 153.5, 139.9, 139.8, 137.2, 136.9, 130.2, 130.2, 128.8, 128.8, 128.7, 125.5, 125.3, 112.1, 111.4, 92.2, 92.0, 71.9, 71.6, 60.8, 60.4, 55.9, 55.8, 55.4, 53.1, 52.8, 43.3, 43.0, 37.1,

36.8, 35.9, 35.3, 32.9, 32.3, 26.2, 25.9, 21.8, 21.2, 19.4; **IR** (Neat): v_{max}2926, 2842, 1604, 1499, 1459, 1356, 1329, 1208, 1124, 1089, 1044, 1015, 806, 757; **HRMS** (ESI): calcd for C₂₇H₃₃O₃ (M+H)⁺405.2424, found 405.2423.

3-(4-Isopropylphenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3r):

Yield: 137 mg, (96%); colorless oil; (*dr* 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.21 - 7.12 (m, 4H), 6.25 (s, 1H), 5.97 (s, 1H), 4.91 (d, J = 15.0Hz, 0.34H), 4.75 (d, J = 15.0 Hz, 0.66H), 4.41 (t, J = 15.0 Hz, 1H), 3.87 (s, 3H), 3.74 (s, 3H), 2.89 (m, 1H), 2.47 (d, J = 13.0 Hz, 1H),

1.90 (m, 1H), 1.55 (m, 2H), 1.45 (s, 3H), 1.26 (s, 3H), 1.24 (d, J = 6.9 Hz, 6H), 1.18 (s, 1H), 1.15 (s, 3H), 1.13 – 1.04 (m, 1H); ¹³**C NMR (100 MHz, CDCl₃)** δ 155.4, 155.3, 154.1, 153.7, 153.5, 148.1, 148.0, 139.9, 139.8, 137.5, 137.2, 130.2, 130.2, 128.7, 128.6, 126.2, 125.6, 125.3, 112.2, 111.5, 92.2, 92.0, 71.9, 71.7, 60.9, 60.5, 55.9, 55.8, 55.4, 53.1, 52.8, 43.3, 43.1, 37.1, 36.8, 35.9, 35.4, 33.8, 32.9, 32.4, 26.2, 25.9, 24.0, 24.0, 21.8, 21.2, 19.4; **IR** (Neat): v_{max} 2928, 2842, 1605, 1498, 1460, 1356, 1329, 1280, 1207, 1089, 1047, 1014, 909, 812, 732; **HRMS** (ESI): calcd for C₂₉H₃₇O₃ (M+H)⁺ 433.2737, found 433.2712.

3-(4-(tert-Butyl)phenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3s):

Yield:144mg, (97%); colorless oil; (*dr* 3:2, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.32 (m, 2H), 7.22 – 7.15 (m, 2H), 6.25 (s, 1H), 5.95 (s, 1H), 4.92 (d, J = 15.0 Hz, 0.41H), 4.76 (d, J = 15.0 Hz, 0.58H), 4.41 (d, J = 13 Hz, 0.51H), 4.37

(d, J = 13 Hz, 0.47H),3.87 (s, 3H), 3.74 (s, 3H), 2.46 (d, J = 12.9 Hz, 1H), 1.90 (m, 1H), 1.56 (m, 2H), 1.45 (s, 3H), 1.31 (s, 9H), 1.26 (s, 3H), 1.18 (s, 1H), 1.15 (s, 3H), 1.09 -1.07 (m, 1H); ¹³C
NMR (100 MHz, CDCl₃) δ 155.3, 155.3, 154.1, 153.7, 153.4,

150.2, 150.2, 139.8, 139.8, 137.1, 136.8, 130.2, 130.1, 128.3, 128.3, 125.5, 125.3, 125.0, 112.1, 111.5, 92.2, 92.0, 71.8, 71.5, 60.8, 60.5, 55.9, 55.8, 55.4, 53.0, 52.8, 43.3, 43.0, 37.1, 36.8, 35.9, 35.3, 34.5, 32.9, 32.3, 31.4, 26.2, 25.9, 21.8, 21.2, 19.3; **IR** (Neat): *ν_{max}* 2931, 2868, 1605, 1498, 1461, 1358, 1329, 1207, 1124, 1089, 1044, 1015, 909, 810, 754,732; **HRMS** (ESI): calcd for C₃₀H₃₉O₃ (M+H)⁺ 447.2893, found 447.2880.

3-(3,5-di-tert-Butylphenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3t):

Yield: 158 mg, (95%); colorless oil; (dr 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.32 (m, 1H), 7.09 (dd, J = 18.1, 1.7 Hz, 2H), 6.25 (s, 1H), 6.00 (s, 1H), 4.94 (d, J = 15.0 Hz, 0.34H), 4.77 (d, J = 15.0 Hz, 0.67H), 4.45 (d, J = 9.8 Hz, 0.51H), 4.42 (d, J = 9.8 Hz, 0.46H),

3.87 (s, 3H), 3.73 (s, 3H), 2.48 (d, *J* = 12.9 Hz, 1H), 1.96 – 1.84 (m, 1H), 1.65 – 1.53 (m, 2H), 1.47 (s, 3H), 1.37 (s, 1H), 1.27 (s, 21H), 1.17 (s, 3H), 1.03 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 155.2, 155.1, 154.0, 153.5, 153.3, 150.1, 150.1, 139.8, 139.7, 138.9, 138.5, 130.2, 130.1, 125.6, 125.3, 122.9, 122.8, 121.3, 121.3, 112.6, 112.0, 92.4, 92.1, 72.5, 72.2, 61.0, 60.6, 55.9, 55.7, 55.4, 55.4, 53.0, 52.7, 43.5, 42.9, 37.0, 36.9, 36.3, 35.1, 34.8, 32.9, 32.3, 31.5, 26.2, 25.8, 22.0, 20.9, 19.4; **IR** (Neat): *v_{max}*2955, 2869, 1600, 1496, 1462, 1359, 1328, 1244, 1206, 1089, 1013, 874, 75; **HRMS** (ESI): calcd for C₃₄H₄₇O₃ (M+H)⁺ 503.3525, found 503.3519.

4,6-Dimethoxy-3-(4-methoxyphenyl)-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-

indeno[1,2,3-de]isochromene (3u):

Yield: 132mg, (95%); colorless oil; (*dr* 2:1, based on ¹H NMR); R_f = 0.5 (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.6 Hz, 1H), 7.15 (d, *J* = 8.5 Hz, 1H), 6.84 (m, 2H), 6.25 (s, 1H), 5.96 (s, 1H), 4.90 (d, *J* = 15.0 Hz, 0.31H), 4.74 (d, *J* = 15.0

Hz, 0.64H), 4.40 (d, J = 15.0 Hz, 0.32H), 4.35 (d, J = 15.0 Hz, 0.65H), 3.87 (s, 3H), 3.79 (s, 3H), 3.73 (s, 3H), 2.47 (d, J = 13.0 Hz, 1H), 1.90 (m, 1H), 1.63 – 1.52 (m, 2H), 1.45 (s, 3H), 1.26 (s, 3H), 1.18 (s, 1H), 1.15 (s, 3H), 1.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 155.3, 155.2, 154.1, 153.8, 153.5, 139.9, 139.8, 132.4, 132.0, 130.2, 130.1, 130.0, 129.9, 125.5, 125.2, 113.4, 112.2, 111.5, 92.3, 92.0, 71.8, 71.4, 60.7, 60.2, 55.9, 55.8, 55.4, 55.2, 53.0, 52.8, 43.3, 43.0, 37.1, 36.8, 35.9, 35.3, 32.9, 32.3, 26.2, 25.9, 21.8, 21.2, 19.3; IR (Neat): v_{max} 2928, 2840, 1607, 1504, 1460, 1330, 1244, 1208, 1173, 1089, 1037, 909, 816, 756, 734; HRMS (ESI): calcd for C₂₇H₃₃O₄(M+H)⁺ 421.2373, found 421.2365.

3-(4-Ethoxyphenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3v):

Yield:138 mg, (96%); colorless oil; (*dr* 1.7:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 6.25 (s, 1H), 5.95 (s, 1H), 4.89 (d, J = 15.0 Hz, 0.36H), 4.73 (d, J = 15.0 Hz, 0.64H), 4.41 (d, J = 15.0 Hz,

0.35H), 4.35 (d, *J* = 15.0Hz, 0.65H), 4.01 (q, *J* = 7.0 Hz, 2H), 3.87 (s, 3H), 3.73 (s, 3H), 2.47 (d, *J* = 13.0 Hz, 1H), 1.90 (m, 1H), 1.57 (m, 2H), 1.45 (s, 3H), 1.40 (t, *J* = 7.0 Hz, 3H), 1.26 (s, 3H), 1.18 (s, 1H), 1.15 (s, 3H), 1.14 – 1.05 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 158.4, 155.2, 154.0, 153.7, 139.8, 132.2, 131.8, 130.1, 130.0, 129.9, 125.4, 125.2, 113.9, 92.2, 92.0, 71.8, 71.4, 63.3, 60.7, 60.2, 55.9, 55.8, 55.3, 53.0, 52.8, 43.3, 43.0, 37.1, 36.8, 35.9, 35.3, 32.9, 32.3, 29.7, 26.1, 25.9, 21.8, 21.2, 19.3, 14.9; **IR** (Neat): v_{max} 2922, 2849, 1607, 1504, 1462, 1330, 1242, 1210, 1172, 1046, 910, 810, 755,733; **HRMS** (ESI): calcd for C₂₈H₃₅O₄(M+H)⁺ 435.2529, found 435.2524.

3-(4-(Allyloxy)phenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3w):

Yield:138 mg, (93%); colorless oil; (*dr*1.8:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.20 - 7.11 (m, 2H), 6.90 - 6.83 (m, 2H), 6.24 (s, 1H), 6.05 (m, 1H), 5.95 (s, 1H), 5.40 (dd, J = 17.3, 1.6 Hz, 1H), 5.27 (dd, J =10.5, 1.4 Hz, 1H), 4.89 (d, J = 15.0 Hz, 0.35H), 4.74 (d, J = 15.0

Hz, 0.65H), 4.52 (d, *J* = 5.3 Hz, 2H), 4.41 (d, *J* = 15.0 Hz, 0.35H), 4.35 (d, *J* = 15.0 Hz, 0.65H), 3.87 (s, 3H), 3.73 (s, 3H), 2.47 (d, *J* = 12.9 Hz, 1H), 1.90 (m, 1H), 1.56 (m, 2H), 1.45 (s, 3H), 1.26 (s, 3H), 1.19 (m, 1H), 1.15 (s, 3H), 1.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 155.3, 155.2, 154.1, 153.8, 153.5, 139.9, 139.8, 133.4, 132.6, 132.2, 130.2, 130.1, 130.0, 129.9, 125.4, 125.2, 117.6, 114.2, 114.2, 112.1, 111.4, 92.2, 92.0, 71.8, 71.4, 68.8, 60.8, 60.2, 55.9, 55.8, 55.4, 53.0, 52.8, 43.3, 43.0, 37.1, 36.8, 35.9, 35.3, 32.9, 32.3, 26.2, 25.9, 21.8, 21.2, 19.3; **IR** (Neat): ν_{max}2926, 2843, 1605, 1502, 1459, 1329, 1237, 1172, 1089, 1014, 915, 805, 732; **HRMS** (ESI): calcd for C₂₉H₃₅O₄(M+H)⁺447.2529, found 447.2505.

3-(3,5-Dimethoxyphenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3x):

Yield:146 mg, (98%); colorless oil; (*dr* 1.9:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 6.47 - 6.38 (m, 3H), 6.24 (s, 1H), 5.92 (s, 1H), 4.94(d, J = 15 Hz, 0.37H), 4.77 (d, J = 15.0 Hz, 0.72H), 4.41 (t, J = 15.0 Hz, 1H),

3.86 (s, 3H), 3.76 (s, 6H), 3.73 (s, 3H), 2.45 (d, J = 12.8 Hz, 1H), 1.94 - 1.86 (m, 1H), 1.64 - 1.53 (m, 2H), 1.49 - 1.46 (m, 1H), 1.45 (s, 3H), 1.26 (s, 3H), 1.18 (s, 3H), 1.12 - 1.02 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 150.6, 150.5, 149.4, 149.1, 148.9, 137.9, 137.7, 135.0, 134.9, 125.4, 120.5, 120.3, 106.7, 106.1, 102.3, 102.1, 94.7, 94.5, 87.5, 87.3, 67.2, 67.0, 56.3, 56.0, 51.1, 51.0, 50.6, 50.5, 48.3, 48.0, 38.5, 38.27, 32.3, 32.1, 31.1, 30.5, 28.2, 27.5, 21.4, 21.1, 17.0, 16.4, 14.6; **IR** (Neat): v_{max} 2926, 2843, 1598, 1459, 1326, 1286, 1201, 1059, 910, 836, 734, 612; **HRMS** (ESI): calcd for C₂₈H₃₅O₅(M+H)⁺ 451.2479, found 451.2465.

3-(4-Chlorophenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-

indeno[1,2,3-de]isochromene (3y):

Yield: 126 mg, (90%); colorless oil; (*dr* 2.5:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 7.19 (dd, J = 18.1, 8.4 Hz,

2H), 6.25 (s, 1H), 5.94 (s, 1H), 4.91 (d, *J* = 15.0 Hz, 0.3H), 4.76 (d, *J* = 15.0 Hz, 0.7H), 4.42 (d, *J* = 15.0 Hz, 0.3H), 4.32 (d, *J* = 15.0 Hz, 0.7H), 3.87 (s, 3H), 3.74 (s, 3H), 2.47 (d, *J* = 13.0 Hz,

1H), 1.90 (q, J = 13.7 Hz, 1H), 1.59 – 1.54 (m, 2H), 1.48 (d, J = 13.2 Hz, 1H), 1.45 (s, 3H), 1.26 (s, 3H), 1.15 (s, 3H), 1.12 – 0.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 155.2, 154.3, 154.2, 154.0, 139.8, 139.7, 138.9, 138.4, 133.4, 130.2, 130.0, 128.2, 125.1,

124.8, 111.4, 110.6, 92.2, 91.9, 71.8, 71.2, 61.3, 60.6, 55.8, 55.7, 55.3, 53.1, 52.9, 43.3, 43.0, 37.1, 36.8, 35.8, 35.3, 32.9, 32.3, 26.1, 25.9, 21.7, 21.1, 19.3; **IR** (Neat): v_{max} 2930, 2841, 1601, 1492, 1460, 1355, 1330, 1207, 1125, 1088, 1013, 908, 806, 730; **HRMS** (ESI): calcd for C₂₆H₃₀ClO₃ (M+H)⁺ 425.1883, found 425.1874.

3-(3-Fluorophenyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3z):

Yield:124 mg, (91%); colorless oil; (*dr* 2.7:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 1H), 7.08 (t, J = 8.7 Hz, 1H), 7.00 – 6.89 (m, 2H), 6.26 (s, 1H), 5.96 (s, 1H), 4.93 (d, J = 15.1 Hz, 0.28H), 4.78 (d, J = 14.9 Hz, 0.72H), 4.44 (d, J = 15.1 Hz, 0.28H), 4.35 (d, J = 14.9 Hz, 0.72H), 3.88 (s, 3H),

3.75 (s, 3H), 2.47 (d, J = 13.0 Hz, 1H), 1.90 (q, J = 13.7 Hz, 1H), 1.58 (m, 2H), 1.48 (d, J = 14.7 Hz, 1H), 1.45 (s, 3H), 1.26 (s, 3H), 1.16 (s, 3H), 1.14 – 1.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 161.6, 155.3, 155.3, 154.3(d, J = 10.0 Hz), 142.8, 142.7, 139.7, 130.2, 129.5(d, J = 8.0 Hz),125.0, 124.8, 124.4, 124.3, 115.8, 115.5, 114.5, 114.3, 110.5, 92.2, 92.0, 71.8, 71.2, 61.4, 60.8, 55.8, 55.7, 55.4, 53.1, 52.9, 43.2, 43.0, 37.1, 36.8, 35.8, 35.3, 32.9, 32.3, 26.1, 25.9, 21.7, 21.2, 19.3; **IR** (Neat): $v_{max}2927$, 2845, 1598, 1491, 1443, 1356, 1330, 1241, 1209, 1126, 126.

1088, 1016, 805, 765, 732; **HRMS** (ESI): calcd for $C_{26}H_{30}O_3F(M+H)^+$ 409.2173, found 409.2173.

4,6-Dimethoxy-6b,10,10-trimethyl-3-(4-nitrophenyl)-3,6b,7,8,9,10-hexahydro-1H-

indeno[1,2,3-de]isochromene (3aa):

Yield: 130mg, (90%); colorless oil; (dr 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane);

¹H NMR (500 MHz, CDCl₃) δ 8.19 – 8.16 (m, 2H), 7.45 (d, J = 8.5 Hz, 2H), 6.27 (s, 1H), 6.00 (s, 1H), 4.94 (d, J = 15.0 Hz, 0.3H), 4.82 (d, J = 14.9 Hz, 0.7H), 4.49 (d, J = 15.0 Hz, 0.3H), 4.30 (d, J = 14.9 Hz, 0.7H), 3.89 (s, 3H), 3.75 (s, 3H), 2.48 (d, J = 13.0 Hz, 1H),

1.90 (q, J = 13.6 Hz, 1H), 1.64 – 1.54 (m, 2H), 1.49 (d, J = 13.2 Hz, 1H), 1.45 (s, 3H), 1.26 (s, 3H), 1.15 (s, 3H), 1.11 – 1.01 (m, 1H); ¹³**C** NMR (100 MHz, CDCl₃) δ 155.2, 154.9, 154.6, 154.5, 147.5, 147.4, 139.6, 130.2, 129.6, 129.4, 124.3, 123.3, 109.6, 92.1, 91.9, 72.0, 71.1, 62.3, 61.2, 55.6, 55.4, 53.2, 53.0, 43.2, 43.0, 37.1, 36.9, 35.8, 35.4, 32.8, 32.3, 29.7, 26.0, 25.8, 21.6, 21.1, 19.2; **IR** (Neat): $v_{max}2922$, 2852, 1602, 1519, 1460, 1345, 1278, 1209, 1090, 1016, 840, 754; **HRMS** (ESI): calcd for C₂₆H₃₀O₅N(M+H)⁺436.2118, found 436.2120.

4,6-Dimethoxy-6b,10,10-trimethyl-3-(4-(trifluoromethyl)phenyl)-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-de]isochromene (3ab):

Yield: 140 mg, (92%); colorless oil; (*dr* 3:1, based on ¹H NMR); R_f = 0.5 (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 6.27 (s, 1H), 6.00 (s, 1H), 4.93 (d, J = 15.1 Hz, 0.25H), 4.79 (d, J = 14.9 Hz, 0.75H), 4.43 (d, J

= 15.1 Hz, 0.25H), 4.31 (d, J = 14.9 Hz, 0.75H), 3.88 (s, 3H), 3.75 (s, 3H), 2.47 (d, J = 12.9 Hz,

1H), 1.90 (q, J = 13.6 Hz, 1H), 1.58 (m, 2H), 1.46 (s, 3H), 1.26 (s, 3H), 1.19 (m, 1H), 1.15 (s, 3H), 1.13 – 1.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 154.5, 154.4, 154.2, 144.5, 144.0, 139.8, 139.7, 130.2, 129.8, 129.5, 129.0, 128.9, 125.1, 125.0, 124.9, 124.6, 111.0, 110.2, 92.1, 91.9, 71.9, 71.3, 61.7, 60.9, 55.7, 55.4, 53.1, 52.9, 43.2, 43.0, 37.1, 36.9, 35.8, 35.3, 32.9, 32.3, 26.1, 25.9, 21.7, 21.1, 19.3; **IR** (Neat): v_{max} 2929, 2844, 1613, 1498, 1461, 1324, 1209, 1163, 1122, 1066, 1016, 758, 733; **HRMS** (ESI): calcd for C₂₇H₃₀O₃F₃(M+H)⁺ 459.2141, found 459.2127.

3-(4,6-Dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-

de]isochromen-3-yl)benzonitrile (3ac):

Yield: 128mg, (93%); colorless oil; (dr 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane);

¹H NMR (400 MHz, CDCl₃) δ 7.66 - 7.50 (m, 2H), 7.48 - 7.41 (m, 2H), 6.27 (s, 1H), 5.95 (s, 1H), 4.93 (d, J = 15.0 Hz, 0.35H), 4.80 (d, J = 14.9 Hz, 0.65H), 4.44 (d, J = 15.0 Hz, 0.35H), 4.26 (d, J = 14.9 Hz, 0.65H), 3.89 (s, 3H), 3.75 (s, 3H), 2.47 (d, J = 13.0 Hz, 1H), 1.90 (q, J

= 13.6 Hz, 1H), 1.57 (d, J = 11.2 Hz, 2H), 1.45 (s, 3H), 1.26 (s, 3H), 1.21 (s, 1H), 1.16 (s, 3H), 1.14 - 1.08 (m, 1H); ¹³**C NMR (100 MHz, CDCl₃)** δ 155.2, 154.7, 154.6, 154.4, 142.3, 141.7, 139.8, 139.6, 133.3, 133.2, 132.4, 132.3, 131.3, 130.3, 129.0, 128.9, 124.7, 124.4, 119.2, 112.1, 110.4, 109.4, 92.1, 91.9, 71.8, 71.0, 62.0, 60.9, 55.7, 55.6, 55.4, 53.2, 53.0, 43.2, 43.1, 37.1, 36.9, 35.7, 35.4, 32.8, 32.3, 26.1, 25.9, 21.6, 21.2, 19.2; **IR** (Neat): v_{max} 2928, 2843, 2230, 1602, 1496, 1461, 1356, 1330, 1209, 1088, 1050, 910, 804, 732, 690; **HRMS** (ESI): calcd for $C_{27}H_{30}O_{3}N(M+H)^{+}$ 416.2220, found 416.2201.

3-([1,1'-Biphenyl]-4-yl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3ad):

Yield: 147mg, (95%); colorless oil; (dr 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane);

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.52 (m, 4H), 7.41 (t, J = 7.7 Hz, 2H), 7.37 – 7.29 (m, 3H), 6.38 (s, 0.8H), 6.28 (s, 1H), 6.04 (s, 1H), 4.95 (d, J = 15.1 Hz, 0.35H), 4.80 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.48 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.42 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.48 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.48 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.48 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 14.9 Hz, 0.65H), 4.48 (d, J = 15.1 Hz, 0.35H), 4.48 (d, J = 14.9 Hz), 4.48 (d, J = 15.1 Hz, 0.35H), 4.48 (d, J = 14.9 Hz), 4.48 (d, J = 15.1 Hz), 4.48 (d, J = 15.1 Hz), 4.48 (d, J = 15.1 Hz), 4.48 (d, J = 14.9 Hz), 4.48 (d, J = 15.1 Hz), 4.48 (d, J = 14.9 Hz), 4.48 (d, J = 15.1 Hz), 4.48 (d, J

0.65H), 4.24 (s, 0.26H), 3.88 (s, 3H), 3.77 (s, 3H), 3.71 (s, 1H), 2.48 (d, J = 13.0 Hz, 1H), 2.20 - 2.08 (m, 0.63), 1.90 (m, 1H), 1.74 – 1.66 (m, 0.61), 1.65 – 1.53 (m, 2H), 1.47 (s, 3H), 1.40 (s, 1H), 1.27 (s, 3H), 1.22 - 1.18 (m, 1H), 1.16 (s, 3H), 1.15 – 1.09 (m, 1H), 0.89 (s, 0.85); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 155.4, 155.3, 154.2, 154.0, 153.7, 141.0, 141.0, 140.4, 139.8, 139.3, 138.9, 138.6, 134.6, 132.1, 130.3, 130.2, 129.2, 129.1, 128.7, 127.2, 127.1, 126.9, 125.4, 125.1, 111.8, 111.1, 107.1, 98.3, 92.3, 92.0, 72.0, 71.6, 61.2, 60.6, 58.6, 55.9, 55.8, 55.4, 55.3, 53.1, 52.9, 43.3, 43.0, 39.3, 37.1, 36.9, 35.9, 35.7, 35.3, 33.2, 32.9, 32.3, 28.3, 27.8, 26.2, 25.9, 23.0, 21.8, 21.2, 19.3, 19.2; **IR** (Neat): v_{max} 2929, 2842, 1722, 1600, 1493, 1459, 1329, 1206, 1067, 1013, 755, 696; **HRMS** (ESI): calcd for C₃₂H₃₅O₃ (M+H)⁺ 467.2586, found 467.2579.

3-(9H-Fluoren-2-yl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3ae):

Yield:143 mg, (90%); white solid (m.p = 170-172 °C); (*dr* 1:0.16, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (m, 2H), 7.51 (d, J = 7.3 Hz, 1H), 7.44 (s, 1H), 7.34 (m, 1H), 7.30 – 7.20 (m, 2H), 6.28 (s,

1H), 6.07 (s, 1H), 4.93 (d, J = 15.0 Hz, 0.1H), 4.78 (d, J = 14.9 Hz, 0.9H), 4.51 (d, J = 15.0 Hz,

0.1H), 4.41 (d, J = 14.9 Hz, 0.91H), 3.89 (s, 3H), 3.86 (s, 2H), 3.73 (s, 3H), 2.49 (d, J = 13.0 Hz, 1H), 1.91 (m, 1H), 1.58 (m, 2H), 1.47 (s, 3H), 1.26 (s, 3H), 1.19 (m, 1H), 1.15 (s, 3H), 1.13 – 1.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 154.2, 153.9, 143.6, 143.2, 141.5, 141.3, 139.9, 138.6, 130.2, 127.5, 126.7, 126.6, 125.6, 125.2, 125.0, 119.9, 119.3, 111.4, 92.1, 72.1, 60.5, 55.8, 55.4, 52.9, 43.3, 36.9, 36.9, 36.0, 32.3, 25.9, 21.2, 19.3; **IR** (Neat): v_{max} 2929, 2842, 1604, 1498, 1459, 1356, 1329, 1208, 1125, 1089, 1013, 908, 757, 733; **HRMS** (ESI): calcd for C₃₃H₃₅O₃ (M+H)⁺479.2580, found 479.2593.

4,6-Dimethoxy-6b,10,10-trimethyl-3-(4-(methylthio)phenyl)-3,6b,7,8,9,10-hexahydro-1Hindeno[1,2,3-de]isochromene (3af):

Yield: 128 mg, (89%); colorless oil; (dr 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.11 (m, 4H), 6.25 (s, 1H), 5.95 (s, 1H), 4.91 (d, J = 15.1Hz, 0.35H), 4.75 (d, J = 14.9 Hz, 0.65H), 4.41 (d, J = 15.1 Hz,

0.35H), 4.34 (d, J = 14.9 Hz, 0.65H), 3.87 (s, 3H), 3.73 (s, 3H), 2.51 – 2.43 (m, 1H), 2.46 (s, 3H), 1.90 (q, J = 13.7 Hz, 1H), 1.55 (m, 2H), 1.45 (s, 3H), 1.26 (s, 3H), 1.18 (m, 1H), 1.15 (s, 3H), 1.13 – 1.03 (m, 1H); ¹³**C NMR (100 MHz, CDCl₃)** δ 155.3, 155.2, 154.2, 154.0, 153.7, 139.9, 139.8, 137.6, 137.2, 136.8, 130.2, 130.2, 130.0, 129.3, 129.2, 126.2, 126.1, 125.3, 125.2, 125.0, 111.7, 111.0, 92.2, 92.0, 71.8, 71.4, 61.0, 60.4, 55.9, 55.8, 55.4, 53.1, 52.8, 43.3, 43.0, 37.1, 36.8, 35.9, 35.3, 32.9, 32.3, 26.1, 25.9, 21.8, 21.2, 19.3, 15.8, 15.7; **IR** (Neat): $v_{max}2925$, 2841, 1696, 1598, 1494, 1459, 1329, 1280, 1209, 1125, 1089, 1014, 806, 757; **HRMS** (ESI): calcd for C₂₇H₃₃O₃S(M+H)⁺437.2144, found 437.2162.

4-(4,6-Dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-

de]isochromen-3-yl)-N,N-dimethylaniline (3ag):

Yield:138mg, (96%); colorless oil;(*dr* 2.3:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane);

¹H NMR (500 MHz, CDCl₃) δ 7.13 – 7.06 (m, 2H), 6.70 – 6.66 (m, 2H), 6.24 (s, 1H), 5.95 (s, 1H), 4.89 (d, J = 15.0 Hz, 0.3H),
4.72 (d, J = 15.0 Hz, 0.7H), 4.38 (d, J = 15.0 Hz, 1H), 3.87 (s, 3H),
3.72 (s, 3H), 2.93 (s, 6H), 2.47 (d, J = 12.9 Hz, 1H), 1.90 (m, 1H),

1.57 (s, 2H), 1.45 (s, 3H), 1.25 (s, 3H), 1.18 (m, 1H), 1.16 (s, 3H), 1.13 – 1.02 (m, 1H); ¹³C **NMR (100 MHz, CDCl₃)** δ 155.2, 155.2, 153.9, 153.4, 153.2, 150.1, 150.0, 140.0, 139.9, 130.1, 129.7, 129.6, 127.8, 127.6, 125.7, 125.5, 112.0, 111.9, 92.2, 92.1, 71.7, 71.6, 60.2, 60.0, 55.9, 55.8, 55.4, 53.0, 52.7, 43.3, 43.0, 40.5, 37.1, 36.8, 36.0, 35.3, 32.9, 32.3, 26.2, 25.9, 21.9, 21.2, 19.4; **IR** (Neat): v_{max} 2927, 2838, 1612, 1519, 1461, 1350, 1336, 1202, 1124, 1091, 1013, 908, 803, 756, 730; **HRMS** (ESI): calcd for C₂₈H₃₆O₃N(M+H)⁺ 434.2689, found 434.2689.

3-(Furan-3-yl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-de]isochromene (3ah):

Yield:110 mg, (87%); colorless oil; (*dr* 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.45 (m, 1H), 6.31 – 6.26 (m, 1H), 6.22 (s, 1H), 6.00 – 5.88 (m, 2H), 5.00 (d, J =15.0 Hz, 0.3H), 4.85 (d, J = 14.7 Hz, 0.7H), 4.45 (d, J = 14.7 Hz, 1H),

3.86 (s, 3H), 3.75 (s, 3H), 2.46 (d, *J* = 13.0 Hz, 1H), 1.97 – 1.83 (m, 1H), 1.57 (m, 2H), 1.53 – 1.47 (m, 1H), 1.43 (s, 3H), 1.27 (s, 3H), 1.20 (s, 3H), 1.14 – 1.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 154.3, 154.1, 153.9, 153.2, 153.1, 142.8, 139.8, 139.7, 130.0, 124.9, 124.7, 110.2, 110.2, 109.9, 109.4, 92.2, 92.1, 65.6, 61.3, 61.2, 56.0, 55.9, 55.3, 53.1, 52.8, 43.3, 43.0,

37.1, 36.8, 35.8, 35.3, 32.9, 32.3, 26.2, 25.8, 21.7, 21.2, 19.3; **IR** (Neat): ν_{max}2926, 2849, 1627, 1608, 1499, 1461, 1357, 1330, 1212, 1128, 1087, 1011, 808, 738; **HRMS** (ESI): calcd for C₂₄H₂₉O₄(M+H)⁺ 381.2060, found 381.2084.

4,6-Dimethoxy-6b,10,10-trimethyl-3-(thiophen-3-yl)-3,6b,7,8,9,10-hexahydro-1H-

indeno[1,2,3-de]isochromene (3ai):

Yield:106 mg, (81%); colorless oil;(dr 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane);

¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.28 (m, 1H), 6.93 (m, 1H), 6.72 (m, 1H), 6.25 (s, 1H), 6.16 (s, 1H), 5.00 (d, J = 15.1 Hz, 0.3H), 4.83 (d, J = 14.9 Hz, 0.7H), 4.56 (d, J = 14.9 Hz, 0.7H), 4.52 (d, J = 15.1 Hz, 0.3H), 3.87 (s, 3H), 3.78 (s, 3H), 2.46 (d, J = 13.0 Hz, 1H), 1.89 (q, J = 13.0 Hz, 1H), 1.80 (q, J = 13.0 Hz), 1.80 (q, J = 13.0 Hz

13.7 Hz, 1H), 1.57 (m, 2H), 1.48 (d, J = 14.5 Hz, 1H), 1.44 (s, 3H), 1.26 (s, 3H), 1.18 (s, 3H), 1.09 – 1.08 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 155.7, 154.4, 154.7, 153.7, 144.3, 144.1, 139.6, 139.6, 130.7, 127.3, 127.9, 126.1, 125.1, 124.5, 124.6, 111.5, 92.6, 67.7, 67.4, 60.7, 60.7, 55.3, 55.3, 55.9, 53.5, 52.5, 43.3, 42.8, 37.4, 36.0, 35.9, 35.6, 33.0, 32.4, 26.0, 25.1, 21.8, 21.6, 19.3; **IR** (Neat): v_{max} 2924, 2852, 1708, 1605, 1498, 1461, 1357, 1209, 1168, 1088, 1042, 1014, 701; **HRMS** (ESI): calcd for C₂₄H₂₉O₃S(M+H)⁺ 397.1831, found 397.1852.

4,6-Dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-

delisochromene (3aj):

Yield: 92mg, (89%); colorless oil; $R_f = 0.5$ (10% EtOAc/hexane); ¹H **NMR (400 MHz, CDCl₃)** δ 6.20 (s, 1H), 4.94 (d, J = 14.5 Hz, 1H), 4.76 (d, J = 14.5 Hz, 2H), 4.57 (d, J = 14.5 Hz, 1H), 3.83 (s, 3H), 3.81 (s,

3H), 2.44 (d, J = 11.3 Hz, 1H), 1.89 (q, J = 13.8 Hz, 1H), 1.62 – 1.50 (m, 3H), 1.43 (s, 3H),

1.25(s, 3H), 1.26 (s, 3H), 1.15 – 1.05 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.5, 153.8, 153.6, 139.6, 130.2, 125.2, 110.5, 92.2, 66.8, 62.6, 55.8, 55.5, 52.9, 43.2, 36.9, 35.6, 32.6, 29.7, 25.9, 21.4, 19.3; **IR** (Neat): v_{max} 2925, 2838, 1607, 1501, 1459, 1358, 1328, 1280, 1209, 1127, 1078, 994, 929, 800, 730; **HRMS** (ESI): calcd for C₂₀H₂₇O₃(M+H)⁺ 315.1954, found 315.1950.

4,6-Dimethoxy-5,6b,10,10-tetramethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-

de]isochromene (3aj'):

To a stirred solution of s1e (100 mg, 0.3300 mmol, 1.0 equiv) and paraformaldehyde (198 mg,

6.6006 mmol, 20 equiv) in dry CH_2Cl_2 (3.3 mL) was added $BF_3.OEt_2$ (8.2 μ L, 0.0660 mmol, 0.2 equiv) at 0 °C and stirred at the same temperature. After completing of the starting material, the reaction was

quenched with H₂O or saturated NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with aq NaCl, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by using silica gel column chromatography (EtOAc/ hexanes) to give **3aj** as (94 mg, 87%); colorless oil; $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 4.93 (d, J = 14.5 Hz, 1H), 4.80 (d, J = 14.5 Hz, 2H), 4.66 (d, J = 14.5 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 2.42 (d, J = 14.3 Hz, 1H), 2.22 (s, 3H), 2.01 - 1.89 (m, 1H), 1.68 – 1.51 (m, 3H), 1.46 (s, 3H), 1.27 (s, 3H), 1.26 (s, 3H), 1.24 - 1.21 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 153.4, 151.9, 138.4, 137.1, 125.2, 120.3, 118.0, 66.9, 63.0, 61.3, 60.6, 53.3, 43.0, 36.8, 36.5, 32.7, 26.0, 22.6, 19.4, 9.5; **IR** (Neat): $v_{max}2928, 2862, 1601, 1465, 1411, 1352, 1211, 1099, 997, 936;$ **HRMS**(ESI): calcd for C₂₁H₂₉O₃(M+H)⁺ 329.2111, found 329.2096.

3-Isopropyl-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-de]isochromene (3ak):

Yield: 92 mg, (78%); colorless oil; (*dr* 2:1, based on ¹H NMR); $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃) δ 6.19 (s, 1H), 4.95 – 4.74 (m, 2H), 4.55 – 4.46 (m, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 2.49 – 2.36 (m, 1H), 2.18 – 2.06 (m, 1H), 1.96 – 1.81 (m, 1H), 1.62 – 1.48 (m,

2H), 1.40 (s, 3H), 1.25 (s, 6H), 1.21 – 1.13 (m, 1H), 1.08 (d, J = 6.6 Hz, 3H), 1.02 - 0.99 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 153.7, 153.5, 153.5, 152.8, 139.8, 139.2, 130.6, 130.2, 125.9, 125.1, 113.9, 113.6, 92.2, 91.9, 75.4, 62.4, 60.8, 55.7, 55.5, 55.3, 52.7, 52.5, 43.4, 43.2, 37.0, 36.8, 35.6, 35.4, 32.7, 32.3, 31.6, 30.9, 21.7, 21.3, 19.7, 19.5, 19.4, 19.3, 19.2, 18.1; **IR** (Neat): v_{max} 2927, 2842, 1601, 1496, 1460, 1356, 1327, 1209, 1086, 1008, 903, 802, 757, 732; **HRMS** (ESI): calcd for C₂₃H₃₃O₃(M+H)⁺ 357.2424, found 357.2438.

3-(tert-Butyl)-4,6-dimethoxy-6b,10,10-trimethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-de]isochromene (3al):

Yield: 88mg, (72%); colorless oil; (dr1:0.1, based on ¹H NMR); R_f = 0.5
(10% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 6.22 (s, 1H), 5.12
(d, J = 15.6 Hz, 1H), 4.84 (d, J = 15.6 Hz, 1H), 4.63 (s, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 2.45 (d, J = 14.5 Hz, 1H), 1.97 - 1.83 (m, 1H), 1.60 -

1.58 (m, 1H), 1.56 – 1.52 (m, 2H), 1.41 (s, 3H), 1.25 (s, 3H), 1.21 (s, 3H), 1.09 – 1.02 (m, 1H), 0.97 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 153.9, 153.6, 139.8, 129.9, 124.8, 112.0, 92.1, 63.2, 55.4, 55.2, 52.4, 43.6, 38.8, 36.7, 35.8, 32.3, 29.7, 28.4, 25.6, 21.0, 19.4; IR (Neat): v_{max}2923, 2856, 1613, 1498, 1463, 1359, 1329, 1213, 1070, 1005, 804, 765; **HRMS** (ESI): calcd for C₂₄H₃₅O₃(M+H)⁺ 371.2580, found 371.2581.

4,6-Dimethoxy-3,3,6b,10,10-pentamethyl-3,6b,7,8,9,10-hexahydro-1H-indeno[1,2,3-

de]isochromene (3am):

Yield: 84 mg, (74%); colorless oil; $R_f = 0.5$ (10% EtOAc/hexane); ¹H NMR (400 MHz, CDCl₃)

1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 153.3, 152.5, 139.3, 130.5, 125.8, 118.3, 92.7, 72.9, 60.5, 55.7, 55.3, 52.4, 43.3, 36.8, 35.5, 32.5, 27.4, 26.0, 25.0, 21.5, 19.3; IR (Neat): ν_{max}2928, 2844, 1600, 1458, 1353, 1320, 1277, 1206, 1090, 1017, 816, 751; HRMS (ESI): calcd for C₂₂H₃₁O₃(M+H)⁺ 343.2267, found 343.2265.

2,4,7,9-Tetramethoxy-5,10-bis(4-methoxyphenyl)-5,10-dihydroindeno[2,1-a]indene (16):

To a stirred solution of **1ao** (100 mg, 0.1805 mmol, 1.0 equiv) in dry CH_2Cl_2 (1.8 mL) was added BF₃.OEt₂ (3.6 μ L, 0.0361 mmol, 0.01M, 0.2 equiv) at 0 °C and stirred at the same

temperature. After completing of the starting material, the reaction was quenched with H₂O or saturated NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with aq NaCl, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by using silica gel column chromatography (EtOAc/ hexanes) to give **16** as (92 mg, 95%) a colorless oil; R_f = 0.4 (20% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.14 (d, *J* = 8.7 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 6.29 (d, *J* = 2.1 Hz, 1H), 6.22 (d, *J* = 2.1 Hz, 1H), 4.83 (s, 1H), 3.78 (s, 3H), 3.71 (s, 3H), 3.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 157.0, 155.1, 153.9, 140.8, 130.4, 129.5, 128.3, 127.9, 124.9, 123.3, 112.7, 97.0, 95.1, 54.5, 54.4, 54.1, 46.9, 28.7; IR (Neat): v_{max} 2958, 2922, 2852, 1612, 1510, 1478, 1362, 1250, 1210, 1050, 842, 799, 772, 577, 560; HRMS (ESI): calcd for C₃₄H₃₃O₆(M+H)⁺ 537.2271, found 537.2269.

3. X-ray Crystallography Information

Figure caption: ORTEP diagram of **3b** compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Figure caption: ORTEP diagram of **3p** compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for 3b: $C_{23}H_{26}O_3$, M = 350.44, Monoclinic, Space group $P2_1/c$ (No. 14), a = 12.435(8)Å, b = 10.019(7)Å, c = 15.766(10)Å, $\alpha = 90^{\circ}$, $\beta = 100.344(9)^{\circ}$, $\gamma = 90^{\circ}$, V = 1932(2)Å³, Z = 4, $D_c = 1.205g/cm^3$, $F_{000} = 752$, Bruker D8 QUEST PHOTON-100, Mo-K α

radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{max} = 55^{\circ}$, $\mu = 0.078$ mm⁻¹, 24142 reflections collected, 4432 unique ($R_{int} = 0.0669$), 241 parameters, R1 = 0.0609, wR2 = 0.1485, R indices based on 3041 reflections with I > $2\sigma(I)$ (refinement on F^2), Final GooF = 1.040, largest difference hole and peak = -0.173 and 0.232 e.Å⁻³. CCDC 2076802 contains the supplementary crystallographic of data for this paper which be obtained free charge can at https://www.ccdc.cam.ac.uk/structures/

Crystal data for 3p: $C_{26}H_{30}O_3$, M = 390.50, Monoclinic, Space group P_{21}/n (No.14), a =15.149(5)Å, b = 7.696(3)Å, c = 19.735(6)Å, $\alpha = 90^{\circ}$, $\beta = 104.073(8)^{\circ}$, $\gamma = 90^{\circ}$, $V = 100^{\circ}$ 2231.7(13)Å³, Z = 4, $D_c = 1.162$ g/cm³, $F_{000} = 840$, Bruker D8 QUEST PHOTON-100, Mo-Ka radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{max} = 50^{\circ}$, $\mu = 0.074$ mm⁻¹, 24226 reflections collected, 3919 unique ($R_{int} = 0.0520$), 353 parameters, R1 = 0.0533, wR2 = 0.1311, R indices based on 3139 reflections with I > $2\sigma(I)$ (refinement on F^2), Final GooF = 1.073, largest difference hole and peak = -0.167 and 0.235 e.Å⁻³. CCDC 2076801 contains the supplementary crystallographic this obtained free of data for which be charge paper can at https://www.ccdc.cam.ac.uk/structures/

Data collection and Structure solution details: Single crystal X-ray data were collected at room temperature on a Bruker D8 QUEST equipped with a four-circle kappa diffractometer and Photon 100 detector. An Iµs microfocus Mo source (λ =0.71073Å) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Integration and scaling of intensity data were accomplished using SAINT program.¹ The structures were solved by Direct Methods using SHELXS97² and refinement was

carried out by full-matrix least-squares technique using SHELXL-2014/7.²⁻³ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of 0.93--0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (C) or $1.5U_{eq}$ for methyl atoms.

- SMART & SAINT. Software Reference manuals. Versions 6.28a & 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
- Sheldrick, G. M. SHELXS97 and SHELXL Version 2014/7, <u>http://shelx.uni-ac.gwdg.de/SHELX/index.php</u>
- Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57–91.

4. ¹H and ¹³C NMR Spectra

