Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

A highly selective AIEgen fluorescent probe for visualizing Cys in living

e S2. ¹H NMR spectra of 2 (CDCl₃).

Figure S4. ¹H NMR spectra of **PE-YW** (CDCl₃).

Figure S6. TOF-MS of **PE-YW** calculated for TOF-MS for $C_{28}H_{20}N_2O_2S$ [M]⁺, 449.5; found, 449.1318

Figure S7. (a) Fluorescence spectra of **PE-OH** (10 μ M) in PBS buffer at pH 7.4 containing different concentrations of DMSO; (b) Fluorescence spectra of Rhodamine B (10 μ M) in PBS buffer at pH 7.4 containing different concentrations of DMSO; (c) the results of DLS; (d) the images of TEM.

Figure S8. TOF-MS of **PE-YW-Cys-1 and PE-YW-Cys-2** after **PE-YW** treatment with Cys.

Figure S9. TOF-MS of Cys-3 after PE-YW treatment with Cys.

Figure S10. TOF-MS of PE-OH after PE-YW treatment with Cys

Table.1 The comparison of reported work with this work

Probe	AIE/AC Q	Ex/Em (nm)	δ	LOD	Time	Application	ref
	ACQ	λex=420 nm; λem=456 nm	0.841	0.657 μM	40 min	in buffer and living cells	1
O CN O CO O	ACQ	$\lambda_{\rm ex} = 413 \text{ nm};$ $\lambda_{\rm em} = 450 \text{ nm}$	/	80 nM	20 min	in buffer and living cells	2
NN-CO	ACQ	λ_{ex} =430 nm; λ_{em} =560/460 nm	0.0235	5.08 μM	40 min	in buffer and living cells	3
Lotto CN	ACQ	$\lambda_{\rm ex}$ = 574 nm, $\lambda_{\rm em}$ =675 nm	0.031	0.2 μM	10 min	in buffer and living cells	4
N Conto	ACQ	$\lambda_{\rm ex} = 450$ nm, $\lambda_{\rm em} = 650/525$ nm	/	0.67 μM, 0.76 μM	10 min	in buffer and living cells	5
	ACQ	$\lambda_{\text{ex}} = 500 \text{ nm},$ $\lambda_{\text{em}} = 539/644 \text{ nm}$	0.84	46.7 nM	30 min	in buffer and living cells	6
	ACQ	$\lambda_{\rm ex}$ = 480 nm, $\lambda_{\rm em}$ =517 nm	/	0.05 μM	< 5 min	in buffer and living cells	7
	ACQ	$\lambda_{\rm ex}$ = 391 nm, $\lambda_{\rm em}$ =559 nm	/	0.12 μM	< 10 min	in buffer and living cells	8
	ACQ	$\lambda_{\rm ex}$ = 538 nm, $\lambda_{\rm em}$ =567 nm	/	39.2 nM	14 min	in buffer and living cells	9
	ACQ	$\lambda_{ex} = 450 \text{ nm},$ $\lambda_{em} = 540 \text{ nm};$ $\lambda_{ex} = 332 \text{ nm},$ $\lambda_{em} = 540/472 \text{ nm};$	0.020	0.084 μM	10 min	in buffer and living cells	10

$\begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	ACQ	$\lambda_{\rm ex}$ = 570nm, $\lambda_{\rm em}$ =591 nm	/	8.5 nM	100 s	in buffer and living cells in buffer and living	11
	ACQ	$\lambda_{\rm ex}$ =420nm, $\lambda_{\rm em}$ =568 nm	/	4.06 nM	5 min	cells and living zebrafish	12
	ACQ	$\lambda_{\rm ex}$ =417nm, $\lambda_{\rm em}$ =550 nm	0.025	0.2 μM	5 min	in buffer and living cells	13
	ACQ	$\lambda_{\rm ex}$ =333nm, $\lambda_{\rm em}$ =446 nm	0.025	0.8 μΜ	30 min	in buffer and living cells	14
	ACQ	$\lambda_{\rm ex}$ =397nm, $\lambda_{\rm em}$ =607 nm	/	0.12 μM	80 min	in buffer and living cells	15
	ACQ	$\lambda_{\rm ex}$ =340nm, $\lambda_{\rm em}$ =475nm	0.254	0.07 μM	10 min	in buffer and living cells	16
	ACQ	$\lambda_{\rm ex}$ =360nm, $\lambda_{\rm em}$ =465nm	1	0.64 μM	10 min	in buffer and living cells	17
	ACQ	$\lambda_{\rm ex}$ =360nm, $\lambda_{\rm em}$ =520nm	/	0.1 μM	5 min	in buffer and living cells	18
	ACQ	$\lambda_{\rm ex}$ =368nm, $\lambda_{\rm em}$ =585nm	/	5.4 nM	20 min	in buffer and living cells	19
	ACQ	$\lambda_{\rm ex}$ =580nm, $\lambda_{\rm em}$ =620nm	/	0.24 μM	60 min	in buffer and living cells	20
	ACQ	$\lambda_{\rm ex}$ =480nm, $\lambda_{\rm em}$ =650nm	/	12.4 nM	5 min	in buffer and living cells	21

NC CN	ACQ	$\lambda_{\rm ex}$ =557nm, $\lambda_{\rm em}$ =673nm	/	0.16 μM	/	in buffer and living cells	22
	ACQ	$\lambda_{\rm ex}$ =600nm, $\lambda_{\rm em}$ =760nm	/	48 nM	5 min	in buffer, living cells and mouse	23
	ACQ	$\lambda_{\rm ex}$ =410nm, $\lambda_{\rm em}$ =506nm	/	0.39 μM	12 min	in buffer and living cells	24
	ACQ	$\lambda_{\rm ex}$ =400nm, $\lambda_{\rm em}$ =525nm	/	14.8 nM	40 min	in buffer and living cells	25
N- S-S-NH	ACQ	$\lambda_{\rm ex}$ =380nm, $\lambda_{\rm em}$ =545nm	/	13 nM	/	in buffer and living cells	26
	ACQ	$\lambda_{\rm ex}$ =425nm, $\lambda_{\rm em}$ =495/620nm	/	91 nM	10 min	in buffer and living cells	27
	ACQ	$\lambda_{\rm ex}$ =470nm, $\lambda_{\rm em}$ =565nm	/	0.158 μM	90 min	in buffer and living cells	28
-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	ACQ	$\lambda_{\rm ex}$ =493nm, $\lambda_{\rm em}$ =620nm	0.3	18.7 μM	30 min	in buffer and living cells	29
C C C C N H	ACQ	$\lambda_{\rm ex}$ =400nm, $\lambda_{\rm em}$ =530nm	/	0.5 μM	50 min	in buffer and living cells	30
	ACQ	$\lambda_{\rm ex}$ =510nm, $\lambda_{\rm em}$ =552/664nm	1	84 nM	100 min	in buffer and living cells	31
$(\mathbf{y}_{\mathbf{H}}^{N},\mathbf{y}_{\mathbf{O}}^{O},\mathbf{v}_{\mathbf{O}}^{O},\mathbf{v}_{\mathbf{O}}^{O})$	ACQ	λ_{ex} =403nm, λ_{em} =537/467nm	0.54	/	120 min	in buffer and living cells	32
	ACQ	$\lambda_{\rm ex}$ =360nm, $\lambda_{\rm em}$ =383/518nm	0.58	0.59 μM	30 min	in buffer and living cells	33

$\sim N^{N} \overset{N}{\underset{P}{\overset{P}}} \overset{P}{\underset{P}{\overset{P}}} \overset{P}{\underset{P}{\overset{P}}} \overset{P}{\underset{P}{\overset{P}}}$	ACQ	$\lambda_{\rm ex}$ =405nm, $\lambda_{\rm em}$ =461/474nm	/	95.1 nM	9 min	in buffer and living cells	34
	ACQ	$\lambda_{\rm ex}$ =570nm, $\lambda_{\rm em}$ =615nm	/	0.12 μM	30 min	in buffer and living cells	35
	AIE	$\lambda_{\rm ex}$ =341nm, $\lambda_{\rm em}$ =490nm	/	0.18 μM	30 min	in buffer and living cells	36
	AIE	$\lambda_{\rm ex}$ =333nm, $\lambda_{\rm em}$ =495nm	/	0.03 μM	15 min	in buffer and living cells	37
	AIE	$\lambda_{\rm ex}$ =478nm, $\lambda_{\rm em}$ =576nm	0.8	1.72 nM	20 min	in buffer, living cells and <i>C.elegans</i>	This wor k

- X. Dai, Q. H. Wu, P. C. Wang, J. Tian, Y. Xu, S. Q. Wang, J. Y. Miao and B. X. Zhao, *Biosens Bioelectron*, 2014, 59, 35-39.
- H. Qiao, Y. Meng, Y. Zhang, J. Sun, T. Wang, X. Zhang, F. Wang and Y. F. Kang, *Chem. Pap.*, 2018.
- X. Dai, T. Zhang, Y. Z. Liu, T. Yan, Y. Li, J. Y. Miao and B. X. Zhao, Sens. Actuator B-Chem., 2015, 207, 872-877.
- 4. S. Feng, Y. Fang, W. Feng, Q. Xia and G. Feng, *Dyes Pigments*, 2017, **146**, 103-111.
- 5. X. Jia, C. Niu, Y. He, Y. Sun and H. Liu, *J Fluoresc.*, 2018, 28, 1059-1064.
- 6. X. Yan, A. Ren, W. Xie and Z. Duan, *Anal Chim Acta*, 2019.
- 7. Y. J. Fu, Z. Li, C. Y. Li, Y. F. Li, P. Wu and Z. H. Wen, *Dyes Pigments*, 2017, 139, 381-387.
- 8. Y. Yu, J. J. Yang, X. Xu, Y. Jiang and B. Wang, Sens. Actuator B-Chem., 2017, 251, 902-908.
- 9. Y. Ji, F. Dai and B. Zhou, *Talanta*, 2019, **197**, 631-637.
- Z. Fu, X. Han, Y. Shao, J. Fang, Z. Zhang, Y. Wang and Y. Peng, *Anal. Chem.*, 2017, 89, 1937-1944.
- 11. H. Li, L. Jin, Y. Kan and B. Yin, Sens. Actuator B-Chem., 2014, 196, 546-554.
- 12. Q. Wu, K. Wang, Z. Wang, Y. Sun and X. Yu, *Talanta*, 2018, **181**, 118-124.
- 13. Y. Liu, D. Yu, S. Ding, Q. Xiao, J. Guo and G. Feng, ACS Appl. Mater. Inter., 2014, 6, 17543.
- 14. H. Zhang, W. Feng and G. Feng, *Dyes Pigments*, 2017, **139**, 73-78.
- 15. L. Tang, D. Xu, M. Tian and X. Yan, *J Lumin*, 2019, **208**, 502-508.
- 16. A. Hs, B. Yha, Z. C. Yi, B. Sf, C. D. Yang, A. Xz and A. Wy, *Dyes Pigments*, 2019, 160, 48-57.
- 17. Yuan, Ding-Hao, Chen, Yi, Chak-Tong, Yin, Shuang-Feng, Hao-Ming, Liu and Wenping, *Sens. Actuator B-Chem.*, 2016, **233**, 173-179.

- 18. L. Wei, C. Wen, S. J. Liu and J. H. Jiang, *Methods Appl. Fluores.*, 2017, 5, 014012.
- X. Liu, H. H. Tian, L. Yang, Y. Su, M. Guo and X. Song, *Tetrahedron Letter.*, 2017,58, 3209-3213..
- Y. L. Meng, Z. H. Xin, Y. J. Jia, Y. F. Kang, L. P. Ge, C. H. Zhang and M. Y. Dai, Spectrochim. Acta. A., 2018, 202, 301-304.
- J. Zhou, C. Yu, Z. Li, P. Peng, D. Zhang, X. Han, H. Tang, Q. Wu, L. Li and W. Huang, *Anal Methods-UK*, 2019, **11**, 1312-1316.
- 22. Y. Yu, H. Xu, W. Zhang, Q. Han, B. Wang and Y. Jiang, J. Photoch. Photobio. A, 2017, 346, 215-220.
- 23. Y. Qi, Y. Huang, B. Li, F. Zeng and S. Wu, Anal. Chem., 2017, 90, 1014-1020.
- 24. Manna, S.; Karmakar, P.; Ali, S. S.; Guria, U. N.; Samanta, S. K.; Sarkar, R.; Datta, P.; Mahapatra, A. K., *Anal Methods-UK*, 2019, **11**, 1199-1207..
- 25. L. Nie, B. Guo, C. Gao, S. Zhang, J. Jing and X. Zhang, *Rsc Adv.*, 2018, **8**, 37410-37416.
- 26. Y. Xiao, Y. Guo, R. Dang, X. Yan, P. Xu and P. Jiang, *RSC Adv.*, 2017, 7, 21050-21053.
- 27. W. Peng, Q. Wang, J. Huang, L. Nan and Y. Gu, Biosens Bioelectron., 2016, 92, 583.
- 28. J. Guo, Z. Kuai, Z. Zhang, Q. Yang, Y. Shan and Y. Li, *Rsc Adv*, 2017, 7, 18867-18873.
- 29. B. Shen and Y. Qian, *Dyes Pigments*, 2019, **166**, 350-356.
- 30. W. W. Ma, M. Y. Wang, D. Yin and X. Zhang, Sens. Actuator B-Chem., 2017, 248, 332-337.
- 31. Zhang, X.; Hang, Y.; Qu, W.; Yan, Y.; Zhao, P.; Hua, J., *Rsc Adv.*, 2016, **6**, 20014-20020.
- 32. Yang, B.; Xu, J.; Yuan, Z.-H.; Zheng, D.-J.; He, Z.-X.; Jiao, Q.-C.; Zhu, H.-L.*Talanta*, 2018, **189**, 629-635.
- 33. Qingqing, Mao, Liang, Wenlang, Stadler and J. Florian, *Talanta*, 2018, **186**, 110-118.
- 34. Zhu, D.; Yan, X.; Ren, A.; Cai, W.; Duan, Z.; Luo, Y., *Anal Methods-UK*, 2019, **11**, 2579-2584.
- S. Jiao, X. He, L. Xu, P. Ma, C. Liu, Y. Huang, Y. Sun, X. Wang and D. Song, *Sens. Actuator B-Chem.*, 2019, 290,47-52.
- 36. G. Jiang, X. Liu, Q. Chen, G. Zeng, Y. Wu, X. Dong, G. Zhang, Y. Li, X. Fan and J. Wang, *Sens. Actuator B-Chem.*, 2017, 252, 712-716.
- Huace, Sheng, Yonghong, Hu, Yi, Zhou, Shimin, Fan and Yang, J. Photoch. Photobio. A., 2018, 364, 750-757.