Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## **Supporting Information**

# Gellan hydrogel-template synthesis of $Au/MnO_2$ with enhanced photothermal conversion performance for localized cancer therapy

Yandi Liu<sup>a</sup>, Yijun Hao<sup>a</sup>, Yingjiao Wu<sup>a</sup>, Sha Lu<sup>a</sup>, Juan Li<sup>a,\*</sup>, Zhijun Zhou<sup>b,\*</sup>

<sup>a</sup>Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science,
College of Chemistry and Chemical Engineering, Central South University, Changsha
410083, China
<sup>b</sup>Department of Laboratory Animal Science & Hunan Provincial Key Laboratory of

Animal Models for Human Diseases, Xiangya Medical College, Central South

University, Changsha 410078, China

E-mail addresses: juanli@csu.edu.cn (J. Li), zhouzhijun@csu.edu.cn (Z. Zhou).

#### 1. Calculation of photothermal conversion efficiency

The photothermal conversion efficiency of three samples was be calculated by using the following formula according to the methods of these articles.<sup>1</sup>

 $\eta = \frac{hS(T_{max} - T_{max, water})}{I(1 - 10^{-A_{808}})}$  $hS = \sum mC_p/\tau_s$  $\tau_s = (-t)/ln\theta$  $\theta = (T_{amb} - T) / (T_{amb} - T_{max})$ 

*h* is the heat transfer coefficient;

*S* is the surface area of the photothermal test vessel;

 $\tau_s$  is the time constant of samples;

*m* is the mass of samples ( $\sim 1.0$  g);

 $C_p$  is the specific heat capacity of water ( $C_p = 4.2 \text{ J} \cdot \text{mol}^{-1}$ );

 $A_{808}$  is the absorbance at 808 nm of different samples.

According to the first heating-cooling process in the photothermal cycle,  $\tau_s$  is obtained by the linear relationship between the cooling period and natural logarithm of driving force temperature (Figure S3).

### 2. Supplementary Figures



Figure S1. SEM and elemental mapping of Au/MnO<sub>2</sub>@GG nanocomposite hydrogel.



**Figure S2.** Digital photographs of Au/MnO<sub>2</sub>@GG nanocomposite hydrogel soaking in the PBS medium at 37 °C.



**Figure S3.** Calculation of photothermal conversion efficiency using the first photothermal cycle of (a, b) Au@GG, (c, d) MnO<sub>2</sub>@GG and (e, f) Au/MnO<sub>2</sub>@GG.



**Figure S4.** Rheological measurement of the pure gellan hydrogel. (a) Strain-dependent moduli. (b) Self-recovery of moduli by alternate strain sweeps at 37 °C. (c) Shear rate-dependent viscosity. (d) Temperature-dependent moduli.



Figure S5. Cell viability (4T1 cells was chosen as the cell model) of different samples.



**Figure S6.** (a) IR thermal images of mice after injection with Au/MnO<sub>2</sub>@GG nanocomposite hydrogels and irradiation with an 808 nm laser (1.0 W cm<sup>-2</sup>) on the first and third days; (b)The temperature curve of the tumor site during the irradiation.



**Figure S7.** Histological data (H&E-stained images) of major organs (heart, liver, spleen, lung, and kidney) from different groups after the whole treatment (lasting for 15 days).

#### Reference

1. C. Sun, L. Wen, J. Zeng, Y. Wang, Q. Sun, L. Deng, C. Zhao and Z. Li, *Biomaterials*,

2016, **91**, 81-89.