Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Electrodeposited cobalt sulfide on vertical graphene nanocomposite for high-performance supercapacitors

Jiajun Fan,^a Long Hu,^a Zhenjun Qi,^a Tao Wan,^{*a} Shihao Huang,^a Xiao Zhang,^a Zhaojun Han,^{*bc} Dewei Chu^a

^a School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia. E-mail: tao.wan@unsw.edu.au

^b School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia. E-mail: zhaojun.han@unsw.edu.au.

^c CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW 2070, Australia

Figure S1 Low magnification SEM images (a) porous nickel foam; (b) CoS/VG deposited nickel foam.

Figure S2 Raman spectra of CoS/VG and CoS/NF electrodes.

Figure S3 Energy-dispersive X-ray spectroscopy (EDS) elemental mapping (a) CoS/VG bright-field (BF) images and (b, c) element mapping of cobalt and sulfide.

Figure S4 XRD patterns for CoS/VG scratched from NF on the glass.

Name	Area (Peaks)	Atomic %	
C1s	9577.43	30.14	
O1s	31965.18	35.96	
S2p₃	1931.34	4.83	
N1s	8287.99	15.74	
Co2p₃	25636.77	7.29	
Ni2p₃	24368.92	6.02	
Table S1 Atomic ratio from XPS survey of CoS/VG/NF			

Figure S5 Linear fit of (a)the reciprocal of the areal capacitance and the square root of scan rate; (b) the areal capacitance and the reciprocal of square root of scan rate.

During the cyclic voltammetry experiments, the interface between CoS/VG electrode and liquid electrolyte appeared double-layer capacitance. To demonstrate the contribution of double layer capacitance and faraday capacitance, the capacitance can be evaluated by Trisatti method as followed.¹

The data is collected from different scan rate and the corresponding areal capacitance is evaluated based on: $C = \frac{S}{2 \cdot \Delta U \cdot v}$, where C is the areal capacitance, S is the enclosed area corresponding cyclic voltammograms (in $A \cdot V/cm^2$),

 ΔU is the potential window (in V), and v is the scan rate (in V/s). If the ion diffusion follows a semi-infinite diffusion pattern, the reciprocal of the calculated areal capacitance (C⁻¹) is linearly correlated with the square root of scan rates (v^{1/2}), as shown in the following equation:

$$C^{-1} = Constant \cdot v^{1/2} + C_{\tau}^{-1}$$

Where C, v and C_t are calculated areal capacitance, scan rate and maximum areal capacitance, respectively. The

"maximum areal capacitance ($C_{ au}$)" is the sum of double layer capacitance and faraday capacitance. $C_{ au}$ equals to the

reciprocal of the y-intercept of the C⁻¹- $v^{1/2}$ (figure S5 (a)), which is 0.6867 F/cm².

The double layer capacitance (C_d) can be calculated by Trisatti method. The calculated areal capacitance (C) is

linearly correlated with the reciprocal of square root of scan rate ($v^{-1/2}$), as shown in the following equation:

$$C = Constant \cdot v^{-1/2} + C_d$$

After Linear fitted the areal capacitance and the reciprocal of square root of scan rate (figure S5 (b)), the double layer capacitance can be read as 0.0396 F/cm². Subtraction of double layer capacitance from specific capacitance yields the faraday capacitance (C_f). The capacitance contribution is evaluated based on the following equations:

$$C_d \% = \frac{C_d}{C_\tau} \times 100\%$$
$$C_f \% = \frac{C_f}{C_\tau} \times 100\%$$

Figure S6 Cycling performance of the single substrate NF under the same charge/discharge current of 0.068 A (10 A/g for the CoS/VG electrode).

References

1. Z. H. Huang, T. Y. Liu, Y. Song, Y. Li and X. X. Liu, Nanoscale, 2017, 9, 13119-13127.