Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Construction of three dimensional S, N co-doped ZIF-67 derivative

assisted by PEDOT nanowires and its application in rechargeable

Zn-air batteries

Wenjuan Xiang^{1,2}, Jing Li², Jinfu Ma^{2,3*}, Zhilin Sheng^{2,3}, Hui Lu^{2,3} and Shaolin Yang^{2,3}

¹Chemical Science and Engineering College, North Minzu University, Yinchuan,
750021, China
²School of Materials Science and Engineering, North Minzu University, Yinchuan,
750021, China
³Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials
Engineering Technology, Yinchuan, 750021, China

Supplementary Figures

Fig. S1. TEM images (a, b) and elemental color mapping of the Co/C@N sample.

^{*} Corresponding author. E-mail address: ma_jinfu@nun.edu.cn (J. Ma).

Fig. S2. TEM images (c, d) and elemental color mapping of the Co/C@NS sample.

Fig. S3.TEM images for Co/C@NS NWs (e, f) catalysts.

Fig. S4. RRDE curves of various catalysts at different rotation rates from 400 to 2500 rpm and the corresponding Koutecky-Levich (K-L) plots (j⁻¹ vs. $\omega^{-1/2}$) of various catalysts between 0.40 V and 0.60 V.

Fig. S5. (a -c) CV graphs of various catalysts measured at different scan rate from 5 to 50 mV s⁻¹. (d) Plots of the current versus the scan rate for Co/ C@N, Co/ C@NS and Co/ C@NS NWs.

Fig. S6. EIS of various catalysts measured.

Supplementary table

Table S1. Comparison of the ORR/OER catalytic performances of Co/C@NS NWs

Sample	ORR				0ER	Ref.
	E _{onset} vs. RHE (V)	E _{1/2} vs. RHE (V)	J _L (mA cm ⁻²)	electron transfer number (n)	E (V) (J=10mA cm ⁻²)	
Co/ C@NS NWs	0.88	0.80	-4.8	3.86~3.94	1.4	this work
Co/ C@NS	0.87	0.81	-4.5	3.92-3.99	1.44	this work
Co/ C@N	0.86	0.79	-4.3	3.9-3.99	1.5	this work
Pt/C	0.92	0.81	-6	3.94-3.99	1.81	this work
Ag NWs-ZIF67	0.903	0.852	-	3.85	1.546	1
ZIF-67	0.75	0.66	4.32	3.87	1.68	2
Zn-Co- ZIF/GO-920	0.914	0.807	6.23	3.97-4.0	-	3
ZIF-67@NPC- 2(2:1)	0.890	0.82	-4.94	4.03	1.64	2
Co,N-PCL	0.863	0.822– 0.846	4.64–5.22	3.97	-	4
P/Ni/Co/NC	0.872	0.775	5.02	-	-	5
Co-CNT	0.957	0.877	5.20	3.9	-	6
CS- HPCN1000-5	0.897	0.697	-3.75	3.9-4.0	-	7
CNT-900	0.934	0.819	4.98	3.99	-	8

with those of other reported works about ZIF-derived catalysts.

Sample	Open circuit potential (V)	Peak power density (mW.cm ⁻²)	Specific capacity at current density@J (mAh.g ⁻¹)	Electrolyte	Oxygen source	Ref.
Co/C@NS NWs	1.46	129.3	800@10	6 M KOH	air	This
Co ₃ O ₄ -x/NG	1.49	166	700.6@10	6 M KOH	air	9 9
Co-NCNT/Ng-900	1.4	174.4	795.0@10	6 M KOH	air	9
CoDNG900	1.45	207.47	669@10	6 M KOH	air	9
FeCo-N-C-700	1.39	150	518@10	6 M KOH	air	9
Co@hNCTs-800	1.45	149	746 @10	6 M KOH	air	9
NiCo _{2.148} O ₄ PNSs	1.46	83	700@10	6 M KOH	air	9
Co ₄ N@NC-2	1.48	74.3	769.4@5	6 M KOH	air	9
1-Pd/Co(OH) ₂	1.4	-	766@10	6 M KOH	air	9
CoNC (1:4)	1.33	126	852@10	6 M KOH	air	9
Co-MOF-800	1.38	144	671.6@10	6 M KOH	air	9
Co-MOF/LC-0.5 + 20Pt/C	1.44	126	-	6 M KOH+0.2M ZnCl ₂	air	10
MnO@Co-N/C	-	130.3	-	6M KOH+0.2 M Zn(Ac)2	air	11
SNC	1.24	94.8	-	Alkaline electrolyte	air	12

Table S2. The performance of liquid rechargeable Zn-air batteries with various bifunctional electrocatalysts.

Reference

1. Y. Wang, M. Zhao, Q. Zhao, Q. Li,H. Pang, Facile synthesis of silver nanowirezeolitic imidazolate framework 67 composites as high-performance bifunctional oxygen catalysts. *Nanoscale* **2018**, *10* (33), 15755-15762.

2. H. Wang, F. X. Yin, B. H. Chen, X. B. He, P. L. Lv, C. Y. Ye, D. J. Liu, ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. *Appl. Catal. B-Environ.* **2017**, *205*, 55-67.

3. Z. Zhu, C. Chen, M. Cai, Y. Cai, H. Ju, S. Hu, M. Zhang, Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates. *Mater. Res. Bull.* **2019**, *114*, 161-169.

4. H. Park, S. Oh, S. Lee, S. Choi,M. Oh, Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. *Appl. Catal B-Environ* **2019**, *246*, 322-329.

5. L. Li, W. Xie, J. Chen, J. Yang, ZIF-67 derived P/Ni/Co/NC nanoparticles as highly efficient electrocatalyst for oxygen reduction reaction (ORR). *J. Solid State Electrochem.* **2018**, *264*, 1-5.

 M. Wang, C. Ye, M. Wang, T. Li, Y. Yu,S. Bao, Synthesis of M (Fe₃C, Co, Ni)porous carbon frameworks as high-efficient ORR catalysts. *Energy Storage Mater*.
 2018, 11, 112-117.

7. P. Cao, Y. Liu, X. Quan, J. Zhao, S. Chen, H. Yu, Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ZIF-8 single crystals for enhanced oxygen reduction reaction. *Catal. Today* **2019**, *327*, 366-373.

8. H. Huang, Y. Li, N. Wang, S. Chen, C. Wang, T. Ma, Efficient oxygen reduction reaction catalyst derived from ZnO@ zeolite imidazolate framework nanowire composite. *Inorg Chem. Commun* **2019**, *101*, 23-26.

9. D. Zhou, H. Fu, J. Long, K. Shen, X. Gou, Novel fusiform core-shell-MOF derived intact metal@carbon composite: An efficient cathode catalyst for aqueous and solid-

state Zn-air batteries. Journal of Energy Chemistry 2022, 64, 385-394.

10. X. Wang, L. Ge, Q. Lu, J. Dai, D. Guan, R. Ran, S.-C. Weng, Z. Hu, W. Zhou, Z. Shao, High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. *Journal of Power Sources* **2020**, *468*.

11. Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang, J. Wei,Z. Zhou, Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries. *Journal of Materials Chemistry A* **2018**, *6* (20), 9716-9722.

12. Y. Guo, S. Yao, L. Gao, A. Chen, M. Jiao, H. Cui,Z. Zhou, Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn–air batteries. *Journal of Materials Chemistry A* **2020**, *8* (8), 4386-4395.