Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supporting Information (ESI)

Crystal Structure of 1-(2,4,6-Trichlorobenzoyloxy) Benzotriazole (**TCB-OBt**): **Observation of uncommon intermolecular oxygen**oxygen interaction and synthetic application in amidation

Gobinda Dolai, Sayanta Roy, Srijit Sen, Rajat Subhra Giri and Bhubaneswar Mandal*

Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Assam- 781039, India.

E-mail: <u>bmandal@iitg.ernet.in</u>

Table of contents

Sl. No	Contents	Page no
1.	Supramolecular arrangement of TCB-OBt	S3
2.	Chemical & optimized structure, HOMO-LUMO energy gap of TCB-(N)-OBt	S4
3.	Crystallographic refinement details for TCB-OBt	S5
4.	NMR (¹ H and ¹³ C), Mass spectra, FT-IR spectra, and HPLC chromatogram of TCB-OBt	S6-S8
5.	NMR (¹ H and ¹³ C) and Mass spectra of side product	S9-S10
6.	NMR (¹ H and ¹³ C) and Mass spectra of isolated intermediate	S11-S12
7.	NMR (¹ H and ¹³ C) and Mass spectra of Amides	S12-S33

Figure. S1 (a) Supramolecular helical architecture formation through non-covalent π - π stacking interaction, oxygen-oxygen interaction, and aromatic C-H...O interaction, (b) supramolecular packing like zigzag manner along c-axis, (c) grid-like supramolecular architecture along b-axis in higher-order self-assembly.

Figure. S2 (a) Chemical structure of TCB-(N)-OBt, (b) Optimized structure TCB-(N)-OBt, (c) HOMO and LUMO molecular orbitals and energy gap of the molecule TCB-OBt, respectively.

Table S1. Crystallographic refinement details for TCB-OBt

Parameters	TCB-OBt
Formula	C ₁₃ H ₆ Cl ₃ N ₃ O ₂
Fw	342.56
Crystal system	Monoclinic
Space group	P2(1)/n
a/Å	10.0723(6)
b/Å	13.1809(9)
c/Å	10.5798(8)
α/ο	90.00
β/º	90.957(3)
γ/ ^o	90.00
$V/Å^3$	1404.40(17)
Z	4
$D_c/g \ cm^{-3}$	1.620
μ Mo K _a /mm ⁻¹	0.658
F000	688
T/K	296(2)
θ max.	25.00
Total no. of reflections	13230
Independent reflections	2452
Observed reflections	2112
Parameters refined	190
$R_1, I > 2\sigma(I)$	0.0368
wR ₂ , $I > 2\sigma(I)$	0.1227
GOF (F^2)	0.968
CCDC No.	2102031

2. NMR (¹H and ¹³C) and Mass spectra of TCBOXY:

Figure S4: ¹³C NMR spectra of TCB-OBt

Figure S5: ESI-MASS spectrum of spectra of TCB-OBt

Figure S6: FT-IR spectra of TCB-OBt

Figure S7: HPLC chromatogram of TCB-OBt, first day of synthesis. (retention time $R_t = 6.554$ min)

Figure S8: HPLC chromatogram of TCB-OBt, after 6 months of the synthesis. (retention time $R_t = 6.555$ min)

3. NMR (¹H and ¹³C) and Mass spectra of side product:

Figure S9: ¹H NMR spectrum of side product

Figure S10: ¹³C NMR spectrum of side product

Figure S11: ESI-MASS spectrum of side product

4. NMR (¹H and ¹³C) and Mass spectra of isolated intermidiate:

Figure S12: ¹H NMR spectrum of isolated intermediate

Figure S13: ¹³C NMR spectrum of isolated intermediate

Figure S14: ESI-MASS spectrum of isolated intermediate

4. NMR (¹H and ¹³C) and Mass spectra of amides:

Figure S16: ¹³C NMR spectrum of compound 2a

Figure S17: ESI-MASS spectrum of compound 2a

Figure S21: ¹H NMR spectrum of compound 2c

Figure S22: ¹³C NMR spectrum of compound 2c

Figure S23: ESI-MASS spectrum of compound 2c

Figure S25: ¹³C NMR spectrum of compound 2d

Figure S27: ¹H NMR spectrum of compound 2e

Figure S28: ¹³C NMR spectrum of compound 2e

Figure S29: ESI-MASS spectrum of compound 2e

Figure S32: ESI-MASS spectrum of compound 2f

Figure S33: ¹H NMR spectrum of compound 2g

Figure S34: ¹³C NMR spectrum of compound 2g

Figure S35: ESI-MASS spectrum of compound 2g

Figure S37: ¹³C NMR spectrum of compound 2h

TCB-OBT-26-1H.1.fid TCB-OBT-26-1H

Figure S39: ¹H NMR spectrum of compound 2i

Figure S40: ¹³C NMR spectrum of compound 2i

Figure S41: ESI-MASS spectrum of compound 2i

Figure S42: ¹H NMR spectrum of compound 2j

Figure S43: ¹³C NMR spectrum of compound 2j

Figure S44: ESI-MASS spectrum of compound 2j

Figure S45: ¹H NMR spectrum of compound 2k

Figure S46: ¹³C NMR spectrum of compound 2k

Figure S47: ESI-MASS spectrum of compound 2k

TCB-OBT-31-1H.4.fid 1H

Figure S49: ¹³C NMR spectrum of compound 2l

Figure S50: ESI-MASS spectrum of compound 21

Figure S51: ¹H NMR spectrum of compound 2m

Figure S52: ¹³C NMR spectrum of compound 2m

Figure S53: ESI-MASS spectrum of compound 2m

Figure S54: ¹H NMR spectrum of compound 2n

Figure S55: ¹³C NMR spectrum of compound 2n

Figure S56: ESI-MASS spectrum of compound 2n