Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Structural and electronic configuration of medium-sized strontium doped

magnesium Sr_mMg_n clusters and their anions

Hang Yang ^a, Yan Fei Hu ^b, Yu Quan Yuan ^{a*}, Qing Yang Li ^a, Song Guo Xi ^a, Yuan Yuan Li ^a, Jing Yang ^a,

Wei Lin^c

^a School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong

643000, China;

^b Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, China

^c Department of Physics, Chengdu Experimental Foreign Languages School, Chengdu 611134, China

^{*} Correspondence authors.

E-mail addresses: <u>yuquan_yuan@suse.edu.cn</u> (Y. Q. Yuan)

SrMg₁₁, Cs

¹A', 0.0000au

 $SrMg_{12}\ ,\ C_1$

¹A , 0.0000au

 $SrMg_{13} \ , \ C_{2V}$

 $SrMg_{10}$, C_{2V} ¹A₁, 0.0000au

11a, C_s ¹A', 0.0040au

12a , C_1 ¹A , 0.0027au

13a , C₁ ¹A , 0.0096au ${}^{1}A_{1}$, 0.0000au

 C_{3V} $^{1}A_{1}$. 0.0133au

11b, Cs

12b, C_1

¹A , 0.0041au

13b , C₁

¹A , 0.0113au

'A', 0.0035au

²A', 0.0000au

SrMg₁₁⁻, C_s ²A', 0.0000au

 $SrMg_{12}$, C_s ²A', 0.0000au

SrMg13-, C2v $^{2}B_{2}, 0.0000au$

14a , C₁ ²A, 0.0028au

15b , C₁ ²A, 0.0039au

10b ,

²A', 0.0008au

11b , C_s ²A', 0.0036au

12b , C_s ²A, 0.0028au

13b , C_1 ²A, 0.0146au

14b , C_s ²A'. 0.0065au

14a , C₁ ¹A , 0.0039au 14b , C₁ ¹A , 0.0009au $SrMg_{14}$ -, C_s $SrMg_{14}$, C_1 ²A", 0.0000au ¹A , 0.0000au 15a , 15b , C₁ 15a , C_s SrMg₁₅, C₁ C_1 SrMg15-, C2V ¹A . 0.0006au ^{1}A , 0.0082au ¹A , 0.0000au ${}^{2}B_{1}$, 0.0000au ²A', 0.0019au

Most stable structures of low-lying isomers of $SrMg_n^{0/-}$ (n=10–15) clusters, along with **S1**. the electronic state, point group symmetry and relative energy (eV).

²A', 0.0011au

10a , C_s

11a , C_1

²A, 0.0065au

12a , $C_{\rm s}$

²A'. 0.0016au

13a , C_1

²A, 0.0152au

 Sr_2Mg_{10} , C_s 'A', 0.0000au

 Sr_2Mg_{11} , C_s ¹A , 0.0000au

 $Sr_2Mg_{12}\ ,\ C_1$ $^{\scriptscriptstyle 1}\!A$, 0.0000au

 $Sr_2Mg_{13}\;,\;C_{2V}$ ¹A₁, 0.0000au

 Sr_2Mg_{14} , C_8 ¹A', 0.0000au

 $Sr_2Mg_{15}\ ,\ C_{2V}$ ${}^{1}A_{1}$, 0.0000au

10b, C_s

¹A', 0.0002au

11b, C₁

¹A , 0.0038au

12b, C_s

¹A', 0.0014au

13b, C_1

¹A, 0.0104au

Sr₂Mg₁₀-, C_s

²A', 0.0000au

 Sr_2Mg_{11} -, C_s

²A', 0.0000au

 Sr_2Mg_{12} -, C_1

 ^{2}A , 0.0000au

Sr₂Mg₁₃-, C_s

²A", 0.0000au

'A', 0.0024au

11a, C_s ¹A , 0.0050au

12a, C₁ ¹A , 0.0001au

13a, C₁ ¹A , 0.0104au

14a, C ¹A , 0.0173au

 $^{1}A_{1}$, 0.0042au

15b, C_2 $^{1}A_{1}$, 0.0005au

 Sr_2Mg_{15} -, C_{2v} ${}^{2}B_{1}$, 0.0000au

²A'. 0.0025au

11a , C_1

²A , 0.0039au

²A , 0.0045au

²A'. 0.0029au

12a , C_1 ²A', 0.0083au

13a , C_1 ²A , 0.0003au

14a , C_{2V} $^{2}B_{1}$, 0.0092au

15a , C₁ ²A , 0.0007au

Most stable structures of low-lying isomers of $Sr_2Mg_n^{0/-}$ (n=10–15) clusters, along with **S2.** the electronic state, point group symmetry and relative energy (eV).

10b . C₁

 $^2\!A$, 0.0112au

13b, C_1 ^{2}A , 0.0045au

14b , C_s ²A', 0.0039au

15b , C1

Electron Binding Energy (eV)

S3. Comparison of the simulated PES with experimental results of the most stable Mg_n^- clusters.

Table. S4 Electronic states, symmetries, average binding energies E_b (eV), HOMO–LUMO energy gaps E_g (eV), and the second-order difference of energies $\triangle_2 E$ (eV) of the most stable Mg_n^{0/-} (*n*=11–17) clusters.

			Mg	n				Mgn	_	
clusters	sta	sym	$E_b(eV)$	Eg(eV)	$\Delta_2 E(\mathrm{eV})$	sta	sym	$E_b(eV)$	Eg(eV)	$\Delta_2 E(\mathrm{eV})$
<i>n</i> =11	1-A'	$C_{\rm 3H}$	0.525	2.045	-0.096	2-A'	C_S	0.729	0.403	-0.318
<i>n</i> =12	1-A'	C_S	0.524	1.433	-0.278	2-A'	C_S	0.729	0.134	-0.117
<i>n</i> =13	1-A'	C_S	0.545	1.457	0.177	2-A'	C_S	0.737	0.145	0.006
<i>n</i> =14	1 - A	C_1	0.550	1.215	-0.639	2-A	C_2	0.745	-0.062	-0.319
<i>n</i> =15	1-A ₁ '	$D_{\rm 3H}$	0.597	1.218	0.592	2-A ₂ "	$D_{\rm 3H}$	0.772	-0.105	0.342
<i>n</i> =16	1-A1	C_{3V}	0.601	1.462	-0.869	2-A ₂ "	C_1	0.775	-0.105	-0.652
<i>n</i> =17	1 - A ₁	D_{4D}	0.656	1.106		2-B ₂	C_{2V}	0.815	-0.293	

Table. S5 The HOMO energy level and LUMO energy level of neutral and anionic clusters. (Δ_{HOMO} (eV): it represents the difference value in the HOMO energy level between the neutral clusters and the corresponding anionic clusters; Δ_{LUMO} (eV): it represents the difference value in the LUMO energy level between the neutral clusters and the corresponding anionic clusters.)

cluster	HOMO (eV)	LUMO (eV)	Δ_{HOMO} (eV)	Δ_{LUMO} (eV)	$E_g(eV)$
SrMg ₁₀	-4.054	-2.220	2 1 9 2	2.450	1.834
SrMg_{10}^-	-0.873	0.230	3.182	2.450	1.102
SrMg ₁₁	-3.869	-2.429	2.062	2 (12	1.441
SrMg ₁₁ ⁻	-0.807	0.213	3.062	2.642	1.020
SrMg ₁₂	-3.847	-2.551	2.026	2 7 2 7	1.296
$SrMg_{12}^{-}$	-0.821	0.176	3.026	2.727	0.997
SrMg ₁₃	-3.821	-2.698	0.775	2.500	1.124
$SrMg_{13}^{-}$	-1.047	-0.129	2.775	2.569	0.918
SrMg ₁₄	-3.727	-2.575	2 (7)	2 500	1.152
$SrMg_{14}^{-}$	-1.048	-0.066	2.679	2.509	0.982
SrMg ₁₅	-3.546	-2.645	0.514	2 410	0.900
$SrMg_{15}^{-}$	-1.031	-0.228	2.514	2.419	0.803
Sr_2Mg_{10}	-3.534	-2.334	2 ((2	2 400	1.200
$Sr_2Mg_{10}^-$	-0.871	0.156	2.663	2.490	1.027
Sr_2Mg_{11}	-3.537	-2.439	2 700	2 (07	1.099
$Sr_2Mg_{11}^-$	-0.747	0.169	2.790	2.607	0.916
Sr_2Mg_{12}	-3.490	-2.564	0.545	0.575	0.926
$Sr_2Mg_{12}^-$	-0.943	0.011	2.547	2.575	0.954
Sr_2Mg_{13}	-3.640	-2.563	2 702	0 (10	1.077
$Sr_2Mg_{13}^-$	-0.937	0.047	2.703	2.610	0.984
Sr_2Mg_{14}	-3.414	-2.531	0.500	2 200	0.883
$Sr_2Mg_{14}^-$	-0.882	-0.133	2.532	2.398	0.749

Sr_2Mg_{15}	-3.592	-2.493	2.775	2.235	1.099
$Sr_2Mg_{15}^-$	-0.818	-0.258			0.559

Table. S6 The type and corresponding contribution of atomic orbitals for $SrMg_{13}^{-}$ cluster.

SrMg ₁₃ -			a-electro	n		β-electron						
AOs	Sr-4d	Sr-5s	Sr-5p	Mg-3s	Mg-3p	Sr-4d	Sr-5s	Sr-5p	Mg-3s	Mg-3p		
LUMO	3.51%			15.71%	77.04%	4.15%			15.02%	76.36%		
НОМО	3.18%			21.21%	72.18%	8.35%	8.66%		27.66%	51.16%		
HOMO-1	8.68%	7.25%		30.53%	48.19%	13.42%			44.80%	38.03%		
HOMO-2	6.03%	15.16%	1.10%	15.07%	55.88%	6.77%	14.14%	1.12%	17.07%	65.21%		
HOMO-3	12.65			46.77%	37.34%				34.77%	58.84%		
	%											
HOMO-4				36.57%	59.18%				36.33%	57.54%		
HOMO-5				37.58%	56.60%	6.56%		0.97%	55.63%	33.95%		
HOMO-6	5.87%		0.80%	57.22%	33.87%	4.11%		5.49%	54.47%	32.54%		

Sr ₂ Mg ₁₁ Molecular orbital												
AOs	Sr-4d	Sr-5s	Sr-5p	Mg-3s	Mg-3p							
LUMO	8.16%	15.34%	4.76%	1.47%	63.67%							
НОМО	4.58%	14.30%	4.82%	13.22%	57.71%							
HOMO-1	1.79%	15.85%	3.52%	22.23%	54.27%							
НОМО-2	6.31%		0.67%	37.65%	51.58%							
НОМО-3	5.26%		1.10%	43.23%	46.97%							
HOMO-4	5.36%		1.96%	40.05%	48.38%							
HOMO-5	7.40%	5.18%	1.13%	38.21%	43.24%							
HOMO-6		19.93%		22.68%	54.06%							
HOMO-7	9.30%		4.32%	52.68%	31.28%							
HOMO-8	5.79%	0.76%	4.16%	55.20%	30.31%							

Table. S7 The type and corresponding contribution of atomic orbitals for Sr_2Mg_{11} cluster.

				M				Mα·				M			
Mg_{11} :				Mg_{11}^{-1}			0.000	Ma	0 207	2 6 4 5	1 560	Mg_{12}^{-1} :			
Mg	1.806	0.000	1.539	Mg	-1.515	-2.315	0.000	Mg	-0.397	2.045	1.500	Mg	0.352	1.177	1.539
Mg	-3.009	0.000	0.000	Mg	1.158	0.735	1.512	Mg	-0.397	-0.480	-1.555	Mg	-2.261	-0.367	1.484
Mg	0.000	0.000	-4.198	Mg	1.158	0.735	-1.512	Mg	-1.883	-4.575	0.000	Mg	0.287	4.152	0.000
Mg	1.504	2.606	0.000	Mg	-2.705	3.990	0.000	Mg	1.973	1.047	2.626	Mg	-2.189	2.464	0.000
Mg	-0.903	1.564	1.539	Mg	-1.221	-0.815	-2.577	Mg	-2.484	1.095	0.000	Mg	2.319	-0.627	0.000
Mg	-0.903	-1.564	-1.539	Mg	-1.221	-0.815	2.577	Mg	-0.397	2.645	-1.560	Mg	-1.548	-2.947	0.000
Mø	1.806	0.000	-1.539	Mg	0.359	3.346	0.000	Mg	2.326	-0.527	0.000	Mg	0.352	1.177	-1.539
Mg	-0.903	1 564	-1 530	Mø	-1.580	0.820	0.000	Mg	0.681	-3.030	0.000	Mg	-2.261	-0.367	-1 484
Mg	0.002	1.564	1 520	Ma	3 253	-0.885	0.000	Mg	-3.225	-1.933	0.000	Mg	2 780	2 457	0.000
Ma	-0.903	2 606	0.000	Ma	1 1 5 8	2 308	1.536	Mg	1.973	1.047	-2.626	Ma	0.352	1 763	2 162
Ng	1.504	-2.000	0.000	Ma	1.150	2.390	1.526	Mg	2 228	2 558	0.000	Ma	1 464	2 502	2.102
Mg	0.000	0.000	4.198	Mg	1.158	-2.398	1.550	Ma	0.307	0.486	1 535	Mg	1.404	-5.595	0.000
								Mig	-0.597	-0.400	1.555	мg	0.352	-1./03	-2.162
Mg:				Mg.,-:				Mg_{14} :				Mg_{14}^{-} :			
Mg	-1.938	-2.173	0.000	Mø	-0.170	-0.395	1.523	Mg	1.634	1.239	1.684	Mg	1.657	0.256	0.881
Mg	0 170	-0.306	1 558	Mg	-0.170	-4 019	1 481	Mg	-0.444	-1.388	-1.906	Mg	0.247	-1.673	2.928
Mg	1.550	2 540	1.556	Ma	1 023	-2.354	0.000	Mg	-0 229	-1 188	1 186	Mo	-1 163	1 024	-1.833
Ma	1.550	2.540	2.627	M	0.170	-2.554	1.522	Ma	-0.223	1 507	0.813	Ma	1 163	-1.024	-1.833
Mg	-1.245	2.112	-2.62/	Mg	-0.170	-0.395	-1.525	Ma	-0.255	2 722	-0.815	Ma	0.205	2 015	1 707
Mg	1.550	2.540	-1.614	Mg	-1.291	2.607	-1.546	Mg	2.049	2.732	-0.834	Mg	0.295	-3.915	-1./8/
Mg	-0.796	3.566	0.000	Mg	-2.756	0.495	0.000	Mg	2.127	-2.393	-0.533	Mg	-1.936	-1.925	-1.692
Mg	-0.263	-4.240	1.517	Mg	-2.361	-2.508	0.000	Mg	-2.653	-2.859	-0.078	Mg	-1.883	2.833	0.626
Mg	0.170	-0.306	-1.558	Mg	-0.170	-4.019	-1.481	Mg	-3.287	2.517	-0.172	Mg	-0.295	3.915	-1.787
Mg	1.841	-2.710	0.000	Mg	1.196	3.455	0.000	Mg	-1.318	1.548	2.054	Mg	1.936	1.925	-1.692
Mg	-2.254	0.831	0.000	Mg	-1.291	2.607	1.546	Mg	-3.265	-0.183	-1.690	Mg	1.883	-2.833	0.626
Mø	-0.263	-4.240	-1.517	Mg	1.441	1.951	2.590	Mg	2.690	-1.559	2.252	Mg	-1.163	-3.361	0.876
Ma	2 722	0.277	0.000	Ma	2 381	0.623	0.000	Mg	2.106	0.222	-2.415	Mg	-1.657	-0.256	0.881
Ma	1 245	2 112	2 627	Ma	1 441	1.051	-2 590	Mo	3 936	0.060	-0.010	Mø	-0.247	1 673	2,928
Nig	-1.243	2.112	2.027	Mg	1.441	1.931	-2.390	Ma	-3 603	-0.256	1 274	Ma	1 163	3 361	0.876
								Mig	-5.075	-0.250	1.2/4	Mg	1.105	5.501	0.070
Mg:				Mg.,-:				Mg ₁₆ :				Mg_{16}^{-} :			
Mg	0.000	1 973	0.000	Mg	0.000	1.876	0.000	Mg	2.600	-1.501	2.805	Mg	-3.661	0.783	0.679
Mg	0.000	1.812	3 244	Mø	0.000	1.798	3 228	Mg	-1.532	-0.884	-3.425	Mg	-2.325	1.856	-1.876
Ma	1 700	0.097	0.000	Ma	-1 557	-0.899	-3 228	Mg	0.000	1.840	-0.366	Mo	-0.483	-0.057	-0.420
M	-1.709	-0.987	0.000	Ma	1.625	-0.039	-5.228	Mo	-1 594	-0.920	-0.366	Ma	2 004	-0.051	-1 700
Mg	0.000	1.812	-3.244	Ma	-1.025	-0.936	1.724	Ma	2 188	1 263	1 740	Ma	1 427	0.221	2 524
Mg	1.709	-0.987	0.000	Mg	2.557	1.470	1.724	Ma	0.000	2 526	1.740	Ma	-1.437	0.221	2.554
Mg	-2.524	1.457	1.671	Mg	1.557	-0.899	3.228	Ma	2.620	-2.520	1.740	мg	-1.13/	2.768	0.852
Mg	-1.569	-0.906	3.244	Mg	0.000	-2.953	-1.724	Mg	2.630	1.518	-1.931	Mg	-3.095	-1.111	-1.698
Mg	2.524	1.457	-1.671	Mg	1.625	-0.938	0.000	Mg	-2.600	-1.501	2.805	Mg	0.769	2.200	-1.920
Mg	1.569	-0.906	-3.244	Mg	2.557	1.476	-1.724	Mg	0.000	1.769	-3.425	Mg	-0.604	-2.925	-1.296
Mg	2.524	1.457	1.671	Mg	-1.557	-0.899	3.228	Mg	0.000	0.000	3.532	Mg	3.395	1.469	-0.614
Mg	1.569	-0.906	3.244	Mg	1.557	-0.899	-3.228	Mg	1.532	-0.884	-3.425	Mg	2.171	-3.684	-0.356
Mø	-1.569	-0.906	-3.244	Mg	0.000	-2.953	1.724	Mg	1.594	-0.920	-0.366	Mg	3.355	-1.189	0.963
Mg	-2 524	1 457	-1 671	Mø	0.000	1.798	-3.228	Mg	-2.188	1.263	1.740	Mg	-2.590	-2.147	1.099
Ma	0.000	2.014	1.671	Ma	-2 557	1 476	1 724	Mg	0.000	-3.037	-1.931	Mg	1 720	3 851	0 4 4 9
Ma	0.000	2.014	1 671	Ma	-2 557	1 476	-1 724	Mg	0.000	3.002	2.805	Mg	0.487	-2 116	1 684
Mg	0.000	-2.914	1.071	Nig	-2.557	1.470	-1./24	Mg	-2.630	1.518	-1.931	Mo	1.431	1.032	1.720
Mg ₁₇ :				Mg ₁₇ -:			a 16 :	0	/						
Mg	-1.542	1.542	2.133	Mg	-1.526	1.570	2.194								
Mg	-2.611	-2.611	-0.591	Mg	0.000	0.000	0.027								
Mg	-2.181	0.000	-2.133	Mg	0.000	3.640	0.637								
Mg	1.542	-1.542	2.133	Mg	-3.633	0.000	0.569								
Mg	0.000	0.000	0.000	Mg	1.526	-1.570	2.194								
Mø	0.000	3 692	0 591	Mg	2.567	2.571	-0.611								
Ma	0.000	-3 602	0.591	Mo	-2.012	0.000	-2 215								
Ma	2 602	-5.092	0.591	Ma	0.000	3 640	0.637								
M	5.092	0.000	0.591	Ma	2 6 2 2	0.000	0.560								
Mg	0.000	2.181	-2.133	Ma	0.000	0.000	0.509								
Mg	1.542	1.542	2.133	Mg	0.000	2.330	-2.1/1								
Mg	0.000	-2.181	-2.133	Mg	-2.567	-2.571	-0.611								
Mg	-1.542	-1.542	2.133	Mg	2.567	-2.571	-0.611								
Mg	-2.611	2.611	-0.591	Mg	2.012	0.000	-2.215								
Mg	-3.692	0.000	0.59	Mg	0.000	-2.330	-2.171								
Mg	2.181	0.000	-2.133	Mg	1.526	1.570	2.194								
Mg	2.611	2.611	-0.591	Mg	-2.567	2.571	-0.611								
Mg	2.611	-2.611	-0.591	Mg	-1.526	-1.570	2.194								
0				-											

S8. The xyz data of each structure in $Mg_n^{0/-}$ (*n*=11-17) clusters.

SrMg ₁₀ :				10a:				10b:			
Sr	0.000 0.	.000	3.020	Sr	-3.867	0.000	0.000	Sr	0.000	0.000	5.461
Mg	0.000 1.	521	-2.498	Mg	2.335	-1.777	0.141	Mg	1.553	-0.896	-3.640
Mg	0.000 -4.	.177	-0.625	Mg	-0.752	-1.798	0.143	Mg	0.000	1.813	-0.592
Mg	1.547 1.	527	0.251	Mg	2.335	0.766	-1.609	Mg	-1.553	-0.896	-3.640
Mg	-1.547 1.	.527	0.251	Mg	0.784	-1.290	2.710	Мg	2.610	1.507	-2.136
Mg	1.547 -1.	.527	0.251	Mg	-0.751	0.775	-1.628	Мg	0.000	0.000	1.808
Mg	-1.547 -1	.527	0.251	Mg	-0.751	1.023	1.485	Мg	-2.610	1.507	-2.136
Mg	2.597 0.	000	-2.162	Mg	0.784	-1.702	-2.472	Mg	0.000	-3.014	-2.136
Mg	0.000 -1.	.521	-2.498	Mg	0.784	2.992	-0.239	Mg	1.570	-0.907	-0.592
Mg	0.000 4.	177	-0.625	Mg	5.140	0.000	0.000	Mg	0.000	1.793	-3.640
Mg	-2.597 0.	.000	-2.162	Mg	2.334	1.011	1.467	Mg	-1.570	-0.907	-0.592
SrMg ₁₁ :				11a:				11b:			
Sr	1.644 -2.	.680	0.000	Sr	0.030	-3.539	0.000	Sr	2.877	3.856	0.000
Mg	0.646 -0.	.306	2.677	Mg	-0.124	2.869	2.625	Mg	-2.851	0.753	0.000
Mg	-1.474 -2.	076	1.487	Mg	-0.124	0.058	-1.518	Mg	-0.401	2.807	0.000
Mg	1.539 4.	731	0.000	Mg	-2.955	-0.373	0.000	Mg	2.353	0.445	0.000
Mg	-1.474 -2.	076 -	-1.487	Mg	-3.434	-3.314	0.000	Mg	-0.413	-2.952	2.624
Mg	0.914 0.	798	0.000	Mg	1.020	3.938	0.000	Mg	-3.067	-1.829	-1.554
Mg	-1.796 1.	.176	1.543	Mg	-0.124	2.869	-2.625	Mg	-0.413	-0.166	1.525
Mg	0.646 2.	965	2.229	Mg	2.506	1.786	-1.557	Mg	-3.067	-1.829	1.554
Mg	-3.705 -0	.558	0.000	Mg	2.506	1.786	1.557	Mg	1.112	-2.369	0.000
Mg	0.646 2.	965	-2.229	Mg	2.359	-0.789	0.000	Mg	-0.413	-2.952	-2.624
Mg	-1.796 1.	.176	-1.543	Mg	-0.124	0.058	1.518	Mg	-1.538	-3.953	0.000
Mg	0.646 -0.	.306	-2.677	Mg	-1.597	2.320	0.000	Mg	-0.413	-0.166	-1.525
SrMg ₁₂ :				12a:				12b:			
Sr	2.385 -1.	.618	-0.026	Sr	-2.973	-2.051	-0.013	Sr	-3.173	-1.391	-0.055
Mg	-2.135 -0	.736	2.875	Mg	3.276	0.001	1.706	Mg	-3.117	1.852	1.306
Mg	-3.006 1.	.742	1.398	Mg	2.148	-1.356	-1.592	Мg	1.712	-1.147	2.827
Mg	2.020 2.	173	-0.775	Mg	-2.884	1.387	-0.749	Mg	-0.396	3.160	0.547
Mg	-3.367 1.	.146	-1.669	Mg	-0.941	3.270	0.638	Мg	1.350	1.662	-1.422
Mg	4.694 0.	714	-1.026	Mg	1.456	1.608	-0.499	Мg	0.742	-2.261	0.135
Mg	-0.019 0.	.715	1.322	Mg	0.177	-0.947	0.873	Мg	2.297	1.514	1.380
Mg	3.483 1.	.251	1.733	Mg	-0.646	2.802	-2.283	Мg	3.778	-1.535	0.717
Mg	-2.677 -1	.768	-2.230	Mg	-2.205	0.674	2.084	Мg	2.601	-1.162	-2.096
Mg	-0.398 0.	.113	-1.696	Mg	4.756	0.219	-0.937	Mg	4.351	0.933	-0.891
Mg	-3.952 -0	.984	0.422	Mg	4.208	-2.485	0.331	Mg	-0.408	-0.652	-2.041
Mg	-1.113 2.	.842	-0.638	Mg	-0.611	-0.246	-1.998	Mg	-0.369	0.257	1.234
Mg	-1.080 -2	.084	0.366	Mg	0.6810	1.567	2.469	Mg	-2.490	1.785	-1.522

SrMg ₁₃ :		13a:		13b:	
Sr	0.000 0.000 2.709	Sr	3.232 -1.063 -1.004	Sr	-2.982 -1.761 -0.380
Mg	2.802 1.501 0.835	Mg	-3.488 -1.731 -0.834	Mg	-0.318 -0.934 1.710
Mg	0.000 0.000 -0.768	Мg	-3.663 0.051 1.595	Мg	-0.565 0.578 -1.280
Mg	0.000 -2.684 0.519	Mg	-1.963 0.286 -2.569	Mg	-2.694 1.163 1.605
Mg	0.000 2.684 0.519	Mg	-1.989 2.222 -0.010	Mg	2.228 -2.861 1.647
Mg	-1.640 2.042 -2.208	Mg	-0.341 -1.586 -0.833	Mg	4.434 1.286 -0.656
Mg	1.640 -2.042 -2.208	Mg	0.717 3.021 1.348	Mg	2.180 0.179 -2.385
Mg	-1.640 -2.042 -2.208	Mg	3.187 2.500 -0.257	Mg	-3.453 1.648 -1.191
Mg	1.640 2.042 -2.208	Mg	0.581 1.220 -1.260	Mg	0.717 -2.099 -0.918
Mg	-2.802 1.501 0.835	Mg	1.308 -2.166 1.743	Mg	0.225 2.020 2.151
Mg	2.802 -1.501 0.835	Mg	2.577 0.641 1.968	Mg	2.564 0.166 1.530
Mg	-3.782 0.000 -1.677	Mg	-1.970 -2.523 1.648	Mg	-1.327 3.534 0.002
Mg	3.782 0.000 -1.677	Mg	-0.649 0.342 1.867	Mg	3.809 -1.687 -0.557
Mø	-2.802 -1.501 0.835	Mø	-4.543 1.087 -1.224	Mø	1.644 2.583 -0.455
SrMø ·	21002 11001 01000	14a ·	1010 1100/ 11221	14h ·	11011 21000 01100
Sr. Sr	0 506 2 762 -0 535	Sr	-2.925 -1.652 -0.385	Sr	-0.880 2.953 -0.599
Μσ	0.077 -0.387 0.197	Mσ	-0.070 -1.913 2.068	Mø	0.605 -0.048 -0.402
Mσ	-3 543 -0 825 1 336	Mg	-2 488 0 425 2 282	Mo	-1 118 0 359 2 081
Mσ	3 834 -2.003 -0.734	Mg	1 942 2 533 1 063	Mø	0.094 -2.262 -2.209
Mσ	1 371 0 907 2 646	Mo	1936 1009 -1836	Mo	1 727 -1 083 2 524
Mo	-0.966 -0.160 -2.549	Mo	4 470 1 191 -0.036	Mo	1.798 1.851 1.802
Mo	3 325 0 711 0 483	Mo	-3 022 1 848 -0 460	Mø	-2 401 -0 316 -1 49
Mo	-1 834 -2 665 -0 304	Mo	2 239 -3 390 0 705	Mo	-0.522 -2.684 1.044
Mo	1.079 -2.780 -1.334	Mo	-1 197 0 555 -2 460	Mo	2 569 -2 686 0 141
Mo	2 235 -1 902 1 862	Mg	-1.076 3.131 1.640	Mg	-3 701 1 305 0 652
Ma	-1 811 1 490 2 145	Mo	2 750 -0 541 1 643	Mo	2 722 2 070 -1 025
Mo	-2 797 1 422 -0 672	Mo	0.629 -1.863 -1.400	Mo	3 950 -0.093 0.785
Mø	-0.965 -1.459 2.750	Mø	-0.383 3.240 -1.254	Mø	-2 535 -3 337 -1 108
Mo	2 202 0 009 -2 272	Mo	3 632 -1 491 -1 187	Mo	2 963 -0 775 -2 152
Mg	-3.808 -1.106 -1.858	Mg	-0.098 0.497 0.451	Mø	-3 363 -1 653 1 255
SrMa ·	2.000 1.100 1.020	159.	0.090 0.197 0.101	15h.	0.000 1.000 1.200
Sr	0 766 2 859 -0 269	Sr	0 223 2 904 0 000	50. Sr	4 294 -0 442 0 184
Ma	-3 883 -0 507 -0 855	Μα	1966 0.284 1.990	Mα	-0.453 -2.904 -2.021
Ma	-0.487 -0.335 0.096	Ma	-1 722 1 174 2 464	Ma	1 493 _0 291 _1 939
Mo	3 224 -2 070 -1 815	Mo	2 008 -2 775 1 493	Mo	1 161 0 756 1 382
Mo	3 421 0 677 -0 559	Mo	-0.427 -1.611 2.739	Mo	-0.919 -1.383 2.561
Mo	-2 784 1 978 0 476	Mg	-0.427 -1.611 -2.740	Mo	-1 750 -3 498 0.688
Mø	3 107 -1 975 1 195	Mg	-1 722 1 174 -2 464	Mø	-2.685 3.855 -0.200
Mø	-1 979 1 339 -2 286	Mo	2 008 -2 775 -1 494	Mo	-1 941 1 504 1 693
Mø	0.817 -3.030 -0.352	Mø	-1 613 -3 134 -0 000	Mo	-3 640 -1 134 1 329
Mø	-3 002 -0 633 2 084	Mø	3 534 1 950 -0.000	Mø	-3 397 -2 055 -1 545
Mø	2 319 0 738 2 162	Mø	-3 244 1 547 0 000	Mø	-0.559 2.304 -1.681
Mg	-0.713 1.229 2.592	Mg	3.900 -1.017 -0.000	Mø	-1.060 -0.427 -0.456
Mg	1.161 -0.012 -2.394	Mg	-3.317 -1.140 1.507	Mg	1.195 -2.352 0.553
Mg	-1.598 -1.714 -2.318	Mg	1.965 0.284 -1.990	Mg	-3.598 1.023 -1.003
Mg	0.555 -1.796 2.545	Mg	-3.317 -1.140 -1.507	Mg	2.365 2.389 -0.893
Mg	-2.582 -2.942 0.281	Mg	-0.298 -0.403 0.000	Mg	0.193 3.611 0.948
<u> </u>		0			

SrMg:		10a:		10b:	
Sr	-1.726 3.225 0.000	Sr	0.724 3.865 0.000	Sr	0.615 -3.811 0.000
Mg	-0.255 0.774 2.159	Mg	-2.112 1.861 0.000	Mg	-0.869 3.853 0.000
Mg	2.271 -3.066 0.000	Mg	-2.214 -0.943 1.539	Mg	0.271 2.737 2.563
Mg	-0.255 -2.160 -1.564	Mg	0.436 0.611 -1.544	Mg	0.271 -0.130 1.534
Mg	1.565 2.019 0.000	Mg	-1.373 -3.353 0.000	Mg	2.852 -1.031 0.000
Mg	-0.255 0.774 -2.159	Mg	-2.214 -0.943 -1.539	Mg	0.271 2.737 -2.563
Mg	-0.255 -2.160 1.565	Mg	0.436 -2.282 -2.216	Mg	1.748 2.000 0.000
Mg	2.394 -0.426 1.549	Mg	0.436 0.6114 1.544	Mg	0.271 -0.130 -1.534
Mg	-0.081 -5.184 0.000	Mg	0.436 -2.282 2.216	Mg	-2.310 1.560 -1.51
Mg	2.394 -0.426 -1.549	Mg	2.262 -1.217 0.000	Mg	-2.144 -1.087 0.000
Mg	-2.055 -0.357 0.000	Mg	1.615 -4.304 0.000	Mg	-2.310 1.560 1.510
SrMg ₁₁ ⁻ :		11a:		11b:	
Sr	-0.166 -3.053 0.000	Sr	-3.182 -1.045 -0.005	Sr	-0.580 -3.591 0.000
Mg	-0.135 2.956 1.505	Mg	-3.297 2.277 -0.838	Mg	-3.178 1.429 0.000
Mg	2.588 2.980 0.000	Mg	0.147 -2.203 -1.293	Mg	-0.710 2.780 1.489
Mg	-0.135 -0.033 1.672	Mg	3.924 0.528 -0.006	Mg	-3.439 -1.530 0.000
Mg	-0.135 -0.033 -1.672	Mg	2.829 -0.418 2.619	Mg	-0.710 2.780 -1.489
Mg	2.323 1.465 2.532	Mg	2.793 -2.247 0.190	Mg	3.985 1.306 0.000
Mg	2.338 -0.289 0.000	Mg	2.175 2.394 -1.630	Mg	1.851 -0.900 0.000
Mg	-2.310 1.352 0.000	Mg	0.158 -0.861 1.412	Mg	1.803 1.280 2.184
Mg	-0.135 2.956 -1.505	Mg	2.364 -0.519 -2.345	Mg	1.854 3.493 0.000
Mg	-3.097 -1.576 1.470	Mg	-1.990 1.671 1.856	Mg	-0.710 -0.273 1.524
Mg	-3.097 -1.576 -1.470	Mg	-0.323 0.815 -1.203	Mg	1.803 1.280 -2.184
Mg	2.323 1.465 -2.532	Mg	1.299 1.872 1.254	Mg	-0.710 -0.273 -1.524
$SrMg_{12}^{-}$:		12a:		12b:	
Sr	-0.961 -2.819 0.000	Sr	-1.647 -3.004 0.000	Sr	-3.045 -1.533 -0.021
Mg	-0.606 0.383 1.585	Mg	0.128 -0.323 1.625	Mg	-2.238 1.398 1.808
Mg	-3.588 -0.864 -1.464	Mg	1.626 -3.135 -1.465	Mg	3.103 -2.242 -0.012
Mg	1.946 -1.195 1.505	Mg	-2.383 3.679 0.000	Mg	-0.303 0.476 -1.113
Mg	-0.606 0.383 -1.585	Mg	2.954 -0.743 0.000	Mg	3.005 -0.613 2.554
Mg	-0.057 2.890 0.000	Mg	-0.763 2.446 -2.202	Mg	2.479 -0.460 -2.388
Mg	-3.588 -0.864 1.464	Mg	2.118 1.926 -1.490	Mg	0.417 -2.430 -1.295
Mg	-3.046 1.805 0.000	Mg	1.626 -3.135 1.465	Mg	-3.347 1.847 -0.888
Mg	1.946 1.731 2.221	Mg	-2.195 0.635 0.000	Mg	1.975 2.402 -1.375
Mg	3.828 0.618 0.000	Mg	2.118 1.926 1.490	Mg	4.013 0.627 -0.037
Mg	1.946 1.731 -2.221	Mg	0.618 4.112 0.000	Mg	1.256 1.598 1.422
Mg	1.946 -1.195 -1.505	Mg	0.126 -0.323 -1.625	Mg	0.243 -1.231 1.474
Mg	2.923 3.501 0.000	Mg	-0.763 2.446 2.202	Mg	-0.960 3.482 -0.086

SrMg _{1,} -:				13a:				13b:			
Sr	0.000	0.000	2.581	Sr	-3.387	-1.670	0.075	Sr	4.200	-0.862	-0.184
Mg	0.000	0.000	-1.068	Mg	2.547	-0.631	-2.323	Mg	-3.702	-0.004	1.783
Mg	1.502	2.754	0.798	Mg	1.356	-2.793	-0.427	Mg	-3.048	2.551	0.254
Mg	-2.437	1.643	-1.995	Mg	2.601	0.848	1.639	Mg	-1.139	1.043	-1.710
Mg	2.437	-1.643	-1.995	Mg	-1.374	3.870	-0.412	Mg	-0.755	0.958	1.589
Mg	-1.502	-2.754	0.798	Mg	-2.775	1.659	1.304	Mg	-2.005	-1.908	-1.961
Mg	1.502	-2.754	0.798	Mg	2.147	-2.085	2.342	Mg	-4.112	0.198	-1.268
Mg	-2 437	-1 643	-1 995	Mg	-0.442	-0.882	-1.973	Mg	-1.299	-1.985	1.191
Mg	2 4 3 7	1 643	-1 995	Mg	0.111	2.592	1.875	Mg	0.195	3.397	-0.091
Mg	-1 502	2 754	0.798	Mg	4.162	1.484	-0.895	Mg	0.780	-1.219	-0.992
Mg	0.000	-3 412	-1.801	Mg	-2.531	1.318	-1.682	Mg	1.991	1.551	-1.739
Mg	0.000	3 412	-1.801	Mg	1.012	1.738	-0.972	Mg	1.515	-1.064	2.089
Mg	-2 803	0.000	0.644	Mg	-0.154	-0.433	1.137	Mg	2.312	1.762	1.316
Ma	2 803	0.000	0.644	Mg	4.066	-1.396	0.150	Mg	-4.032	-2.550	0.120
wig	2.805	0.000	0.044	1.4				1.41			
$SrMg_{14}^{-}$:				14a:			0.015	14b:	• • • • •		0.000
Sr	2.496	0.129	0.000	Sr	0.753	2.976	-0.017	Sr	-2.309	-2.131	0.000
Mg	2.053	-0.753	3.416	Mg	3.205	-1.925	-1.952	Mg	0.136	-2.014	2.535
Mg	-2.895	-1.452	-1.729	Mg	0.935	0.058	-2.286	Mg	0.038	3.639	1.578
Mg	0.225	-2.316	1.586	Mg	-0.460	-0.067	0.416	Mg	0.038	3.639	-1.578
Mg	2.053	-0.753	-3.416	Mg	-2.028	1.324	-1.998	Mg	1.406	1.175	2.605
Mg	0.663	1.787	-2.675	Mg	3.080	-2.042	1.138	Mg	-1.578	1.049	1.700
Mg	-0.311	2.862	0.000	Mg	-3.960	-0.440	-0.484	Mg	1.406	1.175	-2.605
Mg	-2.392	1.641	2.228	Mg	0.398	-1.986	2.469	Mg	2.967	-1.600	1.544
Mg	-0.994	-0.553	-3.823	Mg	-2.726	-0.511	2.481	Mg	0.944	-3.418	0.000
Mg	-2.392	1.641	-2.228	Mg	0.672	-2.745	-0.664	Mg	0.136	-2.014	-2.535
Mg	-0.913	0.023	0.000	Mg	-2.288	-2.701	0.450	Mg	-1.578	1.049	-1.700
Mg	-2.895	-1.452	1.729	Mg	3.341	0.667	-0.382	Mg	2.967	-1.600	-1.544
Mg	0.225	-2.316	-1.586	Mg	-2.718	2.038	0.871	Mg	0.654	-0.135	0.000
Mg	0.663	1.787	2.675	Mg	2.183	0.570	2.392	Mg	-2.534	3.280	0.000
Mg	-0.994	-0.553	3.823	Mg	-2.015	-1.666	-2.398	Mg	2.309	2.516	0.0000
SrMa -·				15a:				15b:			
Sr_{15} .	0.000	0.000	3 380	Sr	2.381	-2.516	0.000	Sr	-4.268	-0.232	-0.184
Ma	0.000	3 384	1 361	Μσ	-0.336	4.562	0.000	Mg	-1.092	0.812	-1.497
Mg	1 4 5 6	2 947	-1.455	Mø	-1.156	2.191	1.634	Mg	1.515	-3.580	-0.666
Mg	2 272	1 512	1 118	Mø	-2.522	-0.620	2.504	Mg	0.717	2.258	1.758
Mg	0.000	1.512	3.818	Mo	-3 631	0.862	0.000	Mg	3 619	0.816	1.132
Mg	0.000	1.512	-3.818	Mg	-1 156	2 191	-1 634	Mg	2 950	3.617	0.180
Mg	-2.272	-1.312	0.254	Ma	-0.794	-2.869	1 574	Mg	0.112	3 565	-0.963
Mg	0.000	2 2 2 4	-0.234	Ma	-0.794	-2.869	-1 574	Ma	-1 556	-0.203	2 030
Mg	0.000	-3.384	1.301	Ma	1 251	-2.809	-1.374	Ma	2 151	1 307	-1.762
Mg	1.450	2.947	-1.455	Mg	2 1 4 9	0.251	-2.388	Mg	2.131	1 2 2 1	1 225
Mg	-1.456	2.947	-1.455	Mg	1 251	0.890	2 388	Mg	3.012	-1.521	-1.235
Mg	2.205	0.000	-2.108	Ma	0.471	0.251	2.388	Ma	0.004	2.219	1.021
мg	-2.272	1.512	1.118	Ma	-0.4/1	-0.239	0.000	Ma	0.094	-2.838	0.429
Mg	-2.205	0.000	-2.108	Mg	-3.310	-2.038	2.504	Ma	0.94/	1 290	0.428
Mg	0.000	1.521	-3.818	Ma	-2.322	-0.020	-2.304	Ma	0.900	-1.380	-2.527
Mg	-1.456	-2.947	-1.455	Ma	1./54	3.032	-1.303	Ma	-1.388	-2.278	-0.709
Mg	2.272	-1.512	1.118	Mg	1./54	5.032	1.303	Mg	-2.104	2.305	0.833

S9. The xyz data of each structure in $\text{SrMg}_n^{0/-}$ (*n*=10-15) clusters.

Sr_2Mg_{10} :				10a:				10b:			
Sr	2.375	0.446	0.000	Sr	-0.468	2.924	0.000	Sr	3.844	2.475	0.000
Sr	2.427	4.441	0.000	Sr	3.553	3.224	0.000	Sr	-3.772	-3.050	0.000
Mg	-0.793	-0.427	1.525	Mg	-3.171	-2.291	1.551	Mg	-1.909	-0.343	1.488
Mg	-0.793	-3.227	-2.613	Mg	-3.171	-2.291	-1.551	Mg	0.738	4.332	0.000
Mg	-0.793	-0.427	-1.525	Mg	-2.999	0.279	0.000	Mg	-1.909	-0.343	-1.488
Mg	-3.424	-2.109	-1.538	Mg	-0.518	-0.578	-1.514	Mg	-1.764	2.316	0.000
Mg	0.685	-2.689	0.000	Mg	-1.655	-4.424	0.000	Mg	0.699	1.321	-1.567
Mg	-3.250	0.486	0.000	Mg	-0.518	-3.371	-2.622	Mg	-0.307	-2.858	0.000
Mg	-1.953	-4.302	0.000	Mg	-0.518	-0.578	1.514	Mg	0.699	-1.524	2.576
Mg	-3.424	-2.109	1.538	Mg	0.975	-2.807	0.000	Mg	0.699	-1.524	-2.576
Mg	-0.793	-3.227	2.613	Mg	2.324	-0.036	0.000	Mg	0.699	1.321	1.567
Mg	-0.671	2.557	0.00	Mg	-0.518	-3.371	2.622	Mg	2.128	-0.873	0.000
Sr_2Mg_{11} :				11a:				11b:			
Sr	1.829	-3.006	0.000	Sr	0.056	-1.985	2.939	Sr	-2.739	-2.347	0.067
Sr	-3.117	-0.415	0.000	Sr	0.056	-1.985	-2.940	Sr	-0.794	3.302	0.134
Mg	3.244	3.480	0.000	Mg	1.383	1.435	-2.439	Mg	-0.135	-1.233	-2.071
Mg	-1.372	2.298	1.522	Mg	1.383	1.435	2.439	Mg	3.870	-1.566	0.998
Mg	0.378	4.263	0.000	Mg	-2.631	3.259	0.000	Mg	-2.746	0.786	-1.710
Mg	1.512	2.371	2.262	Mg	-0.049	3.943	-1.479	Mg	4.467	0.735	-0.832
Mg	0.178	-0.234	-1.622	Mg	-1.881	-2.406	0.000	Mg	2.902	-1.571	-1.933
Mg	2.565	0.484	0.000	Mg	0.816	-3.649	0.000	Mg	-0.248	0.033	0.846
Mg	-1.372	2.298	-1.522	Mg	2.412	2.916	0.000	Mg	1.489	1.227	-1.570
Mg	1.512	2.371	-2.262	Mg	-1.435	0.936	1.503	Mg	-3.333	0.955	1.160
Mg	0.178	-0.234	1.622	Mg	1.129	-0.180	0.000	Mg	1.553	-1.147	2.892
Mg	-1.372	-3.132	-1.472	Mg	-0.049	3.943	1.479	Mg	2.307	1.389	1.319
Mg	-1.372	-3.132	1.472	Mg	-1.435	0.936	-1.503	Mg	1.061	-2.633	0.265
Sr_2Mg_{12} :				12a:				12b:			
Sr	-1.958	-2.094	-1.089	Sr	1.959	-2.095	-1.087	Sr	0.350	-3.046	0.000
Sr	3.211	1.365	-0.664	Sr	-3.211	1.364	-0.665	Sr	0.921	3.144	0.000
Mg	-0.990	1.828	2.638	Mg	0.129	3.055	-0.711	Mg	2.225	-0.098	-1.468
Mg	1.556	-0.344	2.975	Mg	-0.152	0.261	0.364	Mg	-0.331	0.160	0.000
Mg	0.738	-3.110	1.184	Mg	-3.414	-1.670	1.017	Mg	1.061	-1.819	3.590
Mg	0.045	0.388	-2.550	Mg	-0.044	0.384	-2.551	Mg	0.190	1.314	-3.381
Mg	-2.708	3.370	0.688	Mg	3.544	0.466	0.967	Mg	0.190	1.314	3.381
Mg	0.152	0.262	0.365	Mg	0.987	1.830	2.638	Mg	-1.687	-1.040	-2.844
Mg	-3.546	0.464	0.967	Mg	1.480	-1.332	2.269	Mg	-2.193	1.932	1.656
Mg	-2.729	1.433	-1.774	Mg	-1.556	-0.341	2.975	Mg	-2.885	-1.047	0.000
Mg	-1.480	-1.331	2.268	Mg	-1.707	-2.036	-1.518	Mg	-2.193	1.932	-1.656
Mg	-0.130	3.055	-0.711	Mg	2.730	1.434	-1.775	Mg	-1.687	-1.040	2.844
Mg	1.707	-2.035	-1.518	Mg	2.706	3.372	0.688	Mg	2.225	-0.098	1.468
Mg	3.414	-1.670	1.017	Mg	-0.738	-3.109	1.186	Mg	1.061	-1.819	-3.590

Sr_2Mg_{13} :				13a:				13	3b:		
Sr	3.081	0.000	-1.007	Sr	-2.963	-0.957	-1.294	S	-0.327	-2.421	1.411
Sr	-3.081	0.000	-1.007	Sr	-0.123	-2.752	1.373	S	-2.901	-1.099	-1.610
Mg	1.557	3.183	-0.461	Mg	0.697	-0.952	-2.007	M	lg 3.903	-0.715	-1.698
Mg	-1.557	3.183	-0.461	Mg	-0.122	0.496	0.520	M	lg 4.311	1.782	-0.145
Mg	1.557	-3.183	-0.461	Mg	2.867	-0.725	1.147	N	lg 1.006	-1.629	-1.872
Mg	-1.557	-3.183	-0.461	Mg	-3.021	2.312	-0.017	N	lg -3.118	2.247	-0.560
Mg	0.000	-3.965	2.140	Mg	3.752	-0.424	-1.870	Ν	lg 2.017	1.644	-2.139
Mg	-1.714	-1.561	2.187	Mg	-1.070	1.804	-2.243	N	lg 2.546	-0.288	1.246
Mg	0.000	1.643	-2.498	Mg	-0.372	3.818	-0.090	N	[g 2.885	-3.034	0.041
Mg	-1.714	1.561	2.187	Mg	4.449	1.658	0.231	N	lg -1.370	3.219	1.728
Mg	1.714	-1.561	2.187	Mg	1.946	2.009	-1.459	N	[g 1.606	2.711	1.039
Mg	0.000	3.965	2.140	Mg	-2.731	-0.032	2.001	N	[g -0.028	0.800	2.837
Mg	0.000	0.000	0.192	Mg	1.876	2 2 5 9	1 798	N	[σ _0.255	0.627	-0.350
Mg	0.000	-1 643	-2.498	Mg	-1 142	2.556	2 534	N	ο -2.776	0.244	1 744
Mg	1 714	1 561	2.187	Mg	2 640	-3.033	-0 796	N	lg -0.500	3 538	-1 241
141g	1./14	1.501	2.107	mg	2.040	-5.055	-0.790	14.	-0.500	5.550	-1.241
$Sr_{2}Mg_{14}$:				14a:				14	4b:		
Sr	0.064	-1.333	2.990	Sr	-3.941	-0.628	-0.656	S	-4.166	0.000	-0.302
Sr	0.064	-1.333	-2.990	Sr	4.793	-0.033	-0.087	St	1.915	-0.000	-2.470
Mg	0.065	0.245	0.000	Mg	2.025	2.312	0.397	Ν	lg 0.617	-0.000	0.638
Mg	3.146	2.311	0.000	Mg	1.732	0.123	-1.957	Ν	lg 1.183	2.647	2.184
Mg	-3.334	2.063	0.000	Mg	-0.726	0.612	-0.406	Ν	lg 3.568	1.531	0.498
Mg	3.244	-0.332	1.531	Mg	0.089	1.623	2.617	Ν	lg 1.378	-3.020	-0.827
Mg	1.807	-2.414	0.000	Mg	-0.606	3.836	0.800	Ν	lg 2.714	-0.000	2.908
Mg	3.244	-0.332	-1.531	Mg	-0.516	-2.235	-1.437	Ν	lg 3.567	-1.532	0.498
Mg	1.579	1.911	-2.424	Mg	2.498	-2.616	-0.909	Ν	lg -1.165	3.976	0.411
Mg	1.579	1.911	2.424	Mg	-2.772	2.768	-1.172	M	lg 1.182	-2.647	2.184
Mg	-3.226	-0.577	-1.528	Mg	1.656	-0.748	1.321	Ν	lg -1.270	1.545	-1.456
Mg	-1.742	1.765	-2.428	Mg	-2.767	1.813	1.721	M	lg -1.793	-1.533	1.806
Mg	-0.249	3.172	0.000	Mg	0.179	2.957	-2.040	M	lg -1.167	-3.975	0.411
Mg	-1.742	1.765	2.428	Mg	0.453	-3.545	1.164	M	lg -1.270	-1.545	-1.456
Mg	-3.226	-0.577	1.528	Mg	-2.480	-3.676	0.326	Ν	[g -1.793	1.534	1.805
Mg	-1.553	-2.466	0.000	Mg	-1.465	-1.132	1.928	Ν	[g 1.379	3.019	-0.827
0				0					8		
Sr.Mg:				15a:				1:	5b:		
Sr	0.000	4.476	-0.585	Sr	-0.815	1.896	-3.228	S	r 0.000	4.211	-1.336
Sr	0.000	-4.476	-0.585	Sr	0.814	-1.896	-3.228	S	0.000	-4.211	-1.336
Mg	0.000	0.000	0.167	Mg	-2.852	-0.202	1.705	Ň	[g 2.218	-0.388	2.352
Mg	0.000	2.329	2.215	Mg	1.425	-0.548	4.337	N	g 0.825	-1.268	-3.088
Mg	-2.672	2.600	0.762	Mg	-1.968	-0.863	-1.259	N	g -2.349	1.646	-0.486
Mg	-1 545	1 564	-1 927	Mg	2 928	-1 972	-0.435	N	lg 1900	1 2 5 9	-1 619
Mg	3,686	0.000	-0.400	Mg	2.067	-2.747	2.345	N	[g 0.000	0.000	0.395
Mg	2.672	2.600	0.762	Mg	-1.425	0.548	4.337	N	[σ -0.825	1.268	-3.088
Mg	-2.091	0.000	2.286	Mg	0.000	2.910	0.075	N	σ 1.715	2.477	1.226
Mg	-3 686	0.000	-0.400	Mg	1 968	0.863	-1 259	N	σ 0.322	1 472	3 785
Mg	-1 545	-1 564	-1 928	Mg	2 852	0.202	1 705	Ň	[σ _1 182	3 285	1 866
Mg	1 545	1 564	-1.927	Mg	-0.814	-2 144	2 987	N	[σ _1.102	-1.25	-1 619
Mø	2.091	0.000	2.285	Mø	0.000	0.000	0.938	N/	σ 2340	-1.646	-0.486
Mo	1.545	-1.564	-1.927	Mo	0.814	2 144	2.987	N/	σ _2.349	0.388	2.352
Mø	2.672	-2.600	0.762	Mo	-2.928	1 972	-0.435	N/	σ _1.715	-2.477	1 224
Mø	0.000	-2.329	2 215	Mo	0.000	-2.910	0.075	N/	σ 1187	-3 285	1.224
Mo	-2 672	-2.600	0.762	Mo	-2.067	2.747	2 345	N/	σ _0.322	-1 472	3 785
	-2.012	-2.000	0.102	1115	-2.007	2./ 4/	2.545	10.	-0.322	-1.7/2	5.705

Sr ₂ Mg ₁₀ ⁻ :		10a:				10b:			
Sr	2.816 1.884 0.000	Sr	2.816	1.884	0.000	Sr	1.816	2.723	0.337
Sr	3.135 -2.166 0.000	Sr	3.135 -	-2.166	0.000	Sr	3.523	-1.041	-0.359
Mg	-2.520 -1.720 1.492	Mg	-2.520	-1.720	1.492	Mg	-2.247	-0.626	2.825
Mg	-0.156 -3.208 0.000	Mg	-0.158	-3.208	0.000	Mg	-2.124	-2.515	0.471
Mg	-3.692 3.068 0.000	Mg	-3.692	3.068	0.000	Mg	-0.088	-1.874	-1.659
Mg	-2 520 -1 720 -1 492	Mg	-2.520	-1.720	-1.492	Mg	-0.759	1.110	-1.628
Mg	0.129 -0.169 1.515	Mg	0.129 ·	-0.169	1.515	Mg	-1.883	1.849	1.028
Mg	-4 436 0 111 0 000	Mg	-4.436	0.111	0.000	Mg	0.112	-0.347	0.959
Mg	0.129 -0.169 -1.515	Mg	0.129 ·	-0.169	-1.515	Mg	-4.303	-0.359	0.580
Mg	-0.737 2.330 0.000	Mg	-0.737	2.330	0.000	Mg	-3.754	1.927	-1.389
Mg	-2 520 1 185 -2 206	Mg	-2.520	1.185	-2.206	Mg	1.135	-3.479	0.916
Mg	-2.520 1.185 2.206	Mg	-2.520	1.185	2.206	Mg	-2.996	-1.014	-2.035
IVIG	-2.520 1.105 2.200	0				8			
Sr_Mg:		11a:				11b:			
Sr	-2.621 -2.457 0.000	Sr	0.902	3.346	0.099	Sr	-0.750	-1.893	3.020
Sr	2.934 -1.253 0.000	Sr	2.795 .	-2.387	0.080	Sr	-0.750	-1.893	-3.020
Mg	-2.226 4.181 0.000	Mg	-1.567	-1.038	2.878	Mg	1.685	0.395	-1.507
Mg	-2.416 1.159 0.000	Mg	3.348	0.985	1.108	Mg	-1.229	3.475	0.000
Mg	0.474 -3.357 1.470	Mg	0.003 ·	-1.462	-2.033	Mg	0.877	-2.775	0.000
Mg	1.984 1.915 -1.501	Mg	-3.954	-1.436	1.060	Mg	-0.750	1.855	2.502
Mg	-0.819 2.692 2.236	Mg	-1.437	1.165	-1.613	Mg	1.398	3.699	1.503
Mg	-0.819 2.692 -2.236	Mg	-1.213	-2.700	0.378	Mg	-1.075	0.193	0.000
Mg	0.474 -3.357 -1.470	Mg	2.550	0.692	-1.715	Mg	-2.069	-3.015	0.000
Mg	-0.200 -0.166 -1.565	Mg	0.276 -	-0.003	0.757	Mg	-0.750	1.855	-2.502
Mg	-0.200 -0.166 1.565	Mg	-2.267	1.486	1.257	Mg	3.582	2.213	0.000
Mg	0.772 4.241 0.000	Mg	-4.412	0.889	-0.818	Mg	1.398	3.699	-1.503
Mg	1.984 1.915 1.501	Mg	-3.036	-1.614	-1.829	Mg	1.685	0.395	1.507
		-				e			
Sr.Mg -:		12a:				12b:			
Sr ₂ _{B₁₂} .	-1.839 -1.477 -1.791	Sr	-3.134	-1.752	-0.719	Sr	2.243	-2.684	-0.868
Sr	3.510 1.127 -0.206	Sr	0.632	3.363	-0.906	Sr	1.663	2.857	-1.063
Mø	0.346 3.259 -0.167	Mg	3.258	-2.670	-0.511	Mg	-3.672	-1.754	0.635
Mg	-2.128 -1.781 1.592	Mg	-2.659	1.905	-0.566	Mg	-1.819	-0.097	2.539
Mg	-1.664 0.929 3.040	Mg	1.680	1.010	1.561	Mg	-1.811	1.455	-1.719
Mg	-2.263 3.261 1.252	Mg	-0.736	-1.024	2.070	Mg	-4.155	-0.367	-1.957
Mg	-3.677 0.607 0.554	Mg	2.832	0.322	-1.370	Mg	-1.561	-1.842	-1.754
Mg	1.796 -1.755 -1.590	Mg	-1.051	2.487	2.026	Mg	0.080	-0.009	0.015
Mg	0.544 0.971 -2.317	Mg	1.280 .	-2.067	-2.609	Mg	3.436	0.277	0.580
Mg	2.924 -2.004 1.255	Mg	2.128 .	-2.047	2.239	Mg	1.489	1.840	2.375
Mø	0.259 -3.310 0.521	Mg	-0.064	-0.041	-0.806	Mg	1.677	-1.252	2.475
Mø	-2.206 2.117 -1.593	Mg	-3.421	0.473	1.957	Mg	-1.268	2.577	1.135
Mø	0.158 0.298 0.655	Mg	4.364 .	-0.348	1.138	Mg	-0.858	-2.641	1.146
Mø	0.618 -1.483 3.122	Mg	0.313 -	-3.104	0.018	Mg	-3.910	1.267	0.645
		<u> </u>				0			

$Sr_2Mg_{13}^-$:		13a:		13b:	
Sr	2.941 -1.254 0.00) Sr	-1.962 0.373 -2.329	Sr	-2.867 1.209 -1.325
Sr	-1.513 -2.098 0.00	0 Sr	0.678 -2.551 -0.056	Sr	2.858 -1.296 -1.248
Mg	-0.524 1.392 3.87	8 Mg	-1.929 -1.564 2.466	Mg	-2.948 -2.224 -0.296
Mg	-0.524 1.392 -3.87	8 Mg	1.057 3.038 -1.117	Mg	-0.007 -0.002 0.056
Mg	0.290 0.800 0.00) Mg	1.606 0.190 -2.262	Mg	-0.154 -3.089 0.267
Mg	-2.173 -1.187 -3.43	1 Mg	3.867 -1.433 -1.275	Mg	-3.885 -0.194 1.763
Mg	-2.446 1.147 -1.54	0 Mg	3.286 -0.402 1.425	Mg	0.908 1.460 -2.484
Mg	-0.173 3.355 -1.66	3 Mg	2.220 2.456 1.767	Mg	0.153 3.094 0.065
Mg	2.175 1.451 -2.44	Mg	-2.133 2.918 0.244	Mg	-0.924 -1.631 -2.381
Mg	0.735 -1.251 -2.73	n Mg	3.729 1.723 -0.734	Mg	-1.681 -1.994 2.616
Ma	-2 173 -1 188 3 43	1 Mg	-0.038 0.694 0.436	Mg	2.945 2.199 -0.460
Ma	-2.446 1 147 1 54	n Mg	0.790 -0.262 3.066	Mg	-1.290 1.294 2.371
Mg	0.173 2.355 1.66	a Mø	-1.807 1.506 2.997	Mg	1.312 -1.123 2.440
Mg	-0.175 3.355 1.00	Mg	-3 672 0.390 0.800	Mg	3.901 0.318 1.726
Mg	2.175 1.451 2.44	n Mg	-2 911 -2 357 -0 260	Mg	1 699 2 171 2 470
Mg	0.755 -1.251 2.75) 141g	-2.911 -2.557 -0.200	Mig	1.099 2.171 2.470
Sr ₂ Mg:		14a:		14b:	
Sr	3.047 0.000 -1.36	4 Sr	0.000 4.254 0.409	Sr	-0.746 3.440 0.000
Sr	-3.047 0.000 -1.36	4 Sr	0.000 -4.254 0.409	Sr	-0.084 -3.559 0.000
Mø		Mg	0.000 0.000 4.133	Mg	-1.939 1.123 2.452
Mg	0.000 1.680 -2.44) Mg	-1.569 -1.602 2.169	Mg	3.980 0.584 0.000
Ma	-2 515 1 610 1 89	o Mg	1.569 1.602 2.169	Mg	2.770 3.395 0.000
Ma	2515 1610 1.89	o Mg	2.240 -1.844 -0.851	Mg	-3.511 1.055 0.000
Ma	2,515 1,610 1,89	n Mø	1 476 0 000 -3 144	Mg	0.051 -1.253 -2.759
Mg	2515 1610 1.89	n Mg	0 000 2 678 -2 787	Mg	0.051 -1.253 2.759
Ma	2.515 -1.010 1.69	o Mg	-2 240 1 844 -0 851	Mg	-2 780 -1 615 1 484
Mg	0.000 - 1.080 - 2.44	1 Mg	-2.240 -1.844 -0.851	Mg	2 718 -1 763 -1 474
Mg	-1.544 -5.191 -0.44	n Ma	1 569 1 602 2 169	Mg	0.253 0.030 0.000
Mg	0.000 -3.13/ 2.1/	s Ma		Mg	-0.233 -0.030 0.000
Mg	1.544 -3.191 -0.44	I Ma	1 560 1 602 2 160	Mg	1.772 1.190 $-1.9412.718$ 1.762 1.474
Mg	-1.544 3.191 -0.44	I Mg	-1.509 1.002 2.109	Ma	2.718 -1.703 1.474
Mg	0.000 3.137 2.17	s Mg	0.000 - 2.678 - 2.787	Mg	-2./80 -1.015 -1.484
Mg	1.544 3.191 -0.44	l Mg	2.240 1.844 -0.851	Mg	-1.939 1.123 -2.452
Mg	0.000 0.000 3.16	i Mg	-1.4/6 0.000 -3.144	Mg	1.//2 1.196 1.941
				1.51	
$Sr_2Mg_{15}^-$:		15a:		150:	2 177 1 0(2 0 402
Sr	0.000 4.401 -0.57	l Sr	1.533 -2.198 -1.568	Sr	3.177 1.962 0.492
Sr	0.000 -4.401 -0.57	1 Sr	3.768 0.635 0.430	Sr	3.176 -1.963 -0.492
Mg	2.643 -2.548 0.77	5 Mg	-0.569 0.092 0.190	Mg	-0.882 0.000 0.000
Mg	3.641 0.000 -0.46	l Mg	-1.366 3.035 1.236	Mg	-1.711 -1.655 2.469
Mg	-2.643 2.548 0.77	5 Mg	-3.366 -2.203 1.333	Mg	-1.710 1.654 -2.469
Mg	0.000 -2.195 2.30	5 Mg	-0.784 3.341 -1.825	Mg	1.181 -0.492 2.212
Mg	2.230 0.000 2.34) Mg	-0.558 -3.395 1.044	Mg	0.425 -3.285 1.170
Mg	-2.230 0.000 2.34) Mg	1.455 3.270 0.276	Mg	-2.308 -3.422 -0.056
Mg	0.000 2.195 2.30	5 Mg	1.711 -1.676 2.047	Mg	-4.258 -1.289 0.795
Mg	1.572 1.531 -2.00	7 Mg	0.905 1.328 2.533	Mg	-2.877 1.211 2.000
Mg	0.000 0.000 0.17	, Mg	-3.332 0.781 1.681	Mg	-0.072 2.417 1.811
Mg	2 643 2 548 0 77	5 Mg	-3.473 2.494 -0.826	Mg	-2.878 -1.211 -2.000
Mσ	-2.643 -2.548 0.77	5 Mg	-4.175 -0.415 -1.036	Mg	-4.258 1.291 -0.795
Mo	-1 572 -1 531 -2 00	7 Mg	-1.530 0.435 -2.554	Mg	-2.307 3.422 0.056
Ma	-1 572 -1.531 -2.00	7 Mg	-1.943 -2.399 -1.400	Mg	0.426 3.285 -1.170
Mg	-1.572 1.551 -2.00	7 Mø	1.423 1.287 -2.081	Mg	1.181 0.492 -2.211
Ma	-3.641 0.000 0.44	1 Mø	-1.187 -1.026 2.983	Mg	-0.072 -2.411 -1.811
wig	-5.041 0.000 -0.40	1 1118	1.1020 2.905	U	

S10. The xyz data of each structure in $\text{Sr}_2\text{Mg}_n^{0/-}$ (*n*=10-15) clusters.