Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Phase Transformation of Iron oxide to Carbide and Fe₃C being Active Centers for RWGS Reaction

Yang Liu ‡, Palle Ramana Murthy ‡, Xiao Zhang, Haiyan Wang and Chuan Shi *

State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Figure S1 SEM image of as-prepared spindle-like Mil-88A.

Figure S2 SEM images of Mil-88A derived spindle-like α -Fe₂O₃.

Figure S3 CO₂ conversion and CO selectivity of as-prepared spindle-like iron oxide in RWGS. Reaction conditions: 600 °C, ambient pressure, CO_2/H_2 (v/v)=1/2, WHSV=300,000 mL/g/h.

Figure S4 XRD patterns of the spent samples after 15h at 400 °C, 500 °C, 550 °C and 600 °C.

Figure S5 XRD patterns of the spent samples after 15h at 600 °C after different pretreatments. Reaction conditions: 0.1 MPa, CO_2/H_2 (v/v)=1/2, WHSV=300,000 mL/g/h.

Catalyst	Reaction	Space volocity	CO ₂ Conv.	CO Sel.	Producing CO rate	Ref.
	temp.(°C)	(mL/g/h)	(%)	(%)	(mmol/g/h)	
In-situ formed Fe ₃ C	600	300,000	38	ca. 100	1695	Our work
	550	300,000	33	ca. 100	1471	
	500	300,000	28	ca. 100	1249	
Mo ₂ C@N-C	600	24,000	58	98	152	1
Fe-Ce-Al	600	30,000	55	99	146	2
NiCu- Saponite	500	15,000	53	89	63	3
MnO	850	200,000	50	100	893	4
Mo_2C	550	12,000	60	100	64	-
Cs-Mo ₂ C	550	12,000	66	100	70	2
Fe oxide	600	6,000	35	100	47	6
CsFe/Al ₂ O ₃	600	12,000	63	98	66	7
BaZrYZn	600	2,400	37.5	97	19	8
Co-CeO ₂	600	600,000	35	98.5	4617	9
Ru/CeO ₂	600	120,000	38	ca. 100	1017	10
β -Mo ₂ C	600	300,000	42.5	99	1878	11

Table S1 Comparison of catalytic performance for the in-situ formed Fe₃C and Literature Reported Catalysts

- 1. Journal of Energy Chemistry 50 (2020) 37-43
- 2. Applied Catalysis A, General 593 (2020) 117442
- 3. Applied Catalysis B: Environmental 261 (2020) 118241
- 4. Nanoscale 11 (2019) 16677-16688
- 5. Applied Catalysis B: Environmental 244 (2019) 889-898
- 6. Journal of Industrial and Engineering Chemistry 23 (2015) 67-71
- 7. Catalysts 8 (2018) 608
- 8. ACS Catalysis. 4 (2014) 3117–3122
- 9. Catalysis Today 316 (2018) 155-161
- 10. Journal of CO2 Utilization 26 (2018) 350-358
- 11. ACS Catalysis. 7 (2017) 912-918