Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Highly Efficient Hydrogenation Reduction of Aromatic Nitro

Compounds using MOF Derivative Co-N/C Catalyst

Yuyu Dai, Xiaoqing Li*, Likai Wang, Xiangsheng Xu*

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou,

310014, P. R. China. Email: xqli@zjut.edu.cn; future@zjut.edu.cn

Content

Table S1

Table S2

Figure S1-S3

Characterization of the corresponding aromatic amines products for the aromatic nitro compounds in Table 4

Examples for the similar Co@C catalysts	Preparation method for the catalyst	The reaction time and H ₂ pressure for the hydrogenation reduction of nitrobenzoamide derivatives	Conversation
Coº-Co ₃ O ₄ /N-Doped	A solid mixture of GAH, melamine, and		
Carbon Nanotubes	$Co(NO_3)_2 \cdot 6H_2O$ was grinded into powder:	3-15 h, 3 MPa H ₂	99%
Hybrids ^[22]	Then the powder was subjected to pyrolysis	, 2	
Co catalyst ^[23]	The mixture of polysilazane HTT, bisamidinatocobalt(II) complex and dicumylperoxid was crossed linked at 110 °C for 24 h; Then, the solid powder was subjected to pyrolysis.	15 h, 5 MPa H ₂	82-99%
Co–Co ₃ O ₄ /NGr@C- catalyst ^[24]	A mixture of Co(OAc) ₂ ·4H ₂ O and Phen was stirred at 60 °C for 2 h. Next, Vulcan® XC 72R carbon was added and the suspension was stirred for 18 h. Then, the solid power was subjected to pyrolysis.	13-20 h, 2 MPa H ₂	85-99%
Co-Co ₃ O ₄ @carbon-700 catalyst ^[25]	A mixture of cobalt (II) acetate tetrahydrate and chitosan was refluxed at 70 °C for 20 h. Then, the solid power was subjected to pyrolysis.	6 h, 4 MPa H ₂	99%
Co@C NPs ^[21]	The purple solution of $Co(NO_3)_2$, Na_2EDTA , and $NaOH$ in H_2O was transferred into stainless steel autoclave, followed by hydrothermal processing at 200 °C for 24 h. Then $Co@C$ NPs was prepared by reduction of Co-EDTA in H_2 (50 mL/min) at 450 °C for 2 h.	6-15 h, 1 MPa H ₂	93-99%
Co@NC catalyst ^[26]	The carbon nitride $g-C_3N_4$ was prepared by heating the melamine at 550 °C for 8 h; The cobalt nitrate hexahydrate, triethylene diamine and $g-C_3N_4$ were mixture in deionized water; Then, the solid power was subjected to pyrolysis.	3 h, 1 MPa H ₂	97%-99%
Our prepared Co-N/C- 800 catalysts	ZIF-67 powder was prepared by the reaction of $Co(NO_3)_2 \cdot 6H_2O$ and methylimizale in deionized water for 8 h at normal temperature. Then, the solid power was subjected to	4-8 h, 1.5 MPa H ₂	97-99%

Table S1. The preparation method for the reported catalyst and the reaction condition forthe hydrogenation reduction of nitrobenzoamide derivatives

1 1	
nvrolvsis	
py101y515.	

entry	$\operatorname{Co}^{a}(\operatorname{wt}^{0}\!\!\%)$	$\mathrm{C}^{b}\left(\mathrm{wt}^{0}\!$	$\mathrm{H}^{b}\left(\mathrm{wt}^{0}\!\right)$	N^{b} (wt%)
Fresh	23.9	56.9	1.1	3.1
Reused	20.4	58.8	1.0	2.7

Table S2. Elemental analysis of Co-N/C-800 reused of 10 runs.

Figure S1. HR-TEM images (Left) and Particle size distribution statistics (right) of the asprepared (a) Co-N/C-800-1, (b) Co-N/C-800-2, (c) Co-N/C-800, (d) Co-N/C-800-10, (e) Co-N/C-800-45.

Figure S2. Collection of Co-N/C-800 catalyst

Figure S3 (a) XRD spectra of the reused Co-N/C-800 catalyst; (b) Particle size distribution statistics of deactivation Co-N/C-800 catalyst; TEM images of partial deactivation Co-N/C-800 catalyst (c) at 200 nm, (d) at 5 nm.

Characterization of the corresponding aromatic amines products for the aromatic nitro compounds in Table 4.

Aniline

¹H NMR (500 MHz, DMSO-d6) δ 7.07 – 6.97 (m, 2H), 6.61 – 6.54 (m, 2H), 6.54 – 6.47 (m, 1H), 4.99 (s, 2H).

p-Touidine

¹H NMR (500 MHz, DMSO-d6) δ 6.82 (d, J = 8.0 Hz, 2H), 6.49 – 6.44 (m, 2H), 4.77 (s, 2H), 2.12 (s, 3H).

m-Toluidine

¹H NMR (500 MHz, DMSO-d6) δ 6.90 (t, J = 7.6 Hz, 1H), 6.42 – 6.35 (m, 2H), 6.33 (d, J = 7.3 Hz, 1H), 4.91 (s, 2H), 2.16 (s, 3H).

4-Chloroaniline

 1 H NMR (500 MHz, DMSO) δ 7.05 – 6.98 (m, 2H), 6.60 – 6.52 (m, 2H), 5.22 (s, 2H).

m-Chloroaniline

¹H NMR (500 MHz, DMSO-d6) δ 7.00 (dd, J = 10.4, 5.6 Hz, 1H), 6.58 (t, J = 1.5 Hz, 1H), 6.52 – 6.46 (m, 2H), 5.38 (s, 2H).

3-Bromoaniline

¹H NMR (500 MHz, DMSO-d6) δ 6.94 (t, J = 8.0 Hz, 1H), 6.74 (t, J = 1.8 Hz, 1H), 6.64 – 6.59 (m, 1H), 6.54 (dd, J = 8.1, 1.9 Hz, 1H), 5.37 (s, 2H).

4-Fluoroaniline

¹H NMR (500 MHz, DMSO-d6) δ 6.88 – 6.80 (m, 2H), 6.59 – 6.52 (m, 2H), 4.92 (s, 2H).

3,4-Dichloroaniline

¹H NMR (500 MHz, DMSO-d6) δ 7.18 (dd, J = 8.7, 4.6 Hz, 1H), 6.77 – 6.71 (m, 1H), 6.56 – 6.48 (m, 1H), 5.54 (s, 2H).

p-Aminophenol

¹H NMR (500 MHz, DMSO-d6) δ 8.33 (s, 1H), 6.49 – 6.45 (m, 2H), 6.43 – 6.38 (m, 2H), 4.37 (s, 2H).

p-Phenylenediamine

¹H NMR (500 MHz, DMSO-d6) δ 6.36 (s, 4H), 4.18 (s, 4H).

4'-Aminoacetophenone

¹H NMR (500 MHz, DMSO-d6) δ 7.70 – 7.64 (m, 2H), 6.61 – 6.50 (m, 2H), 6.03 (s, 2H), 2.38 (s, 3H).

p-Anisidine

¹H NMR (500 MHz, DMSO-d6) δ 6.69 – 6.61 (m, 2H), 6.56 – 6.48 (m, 2H), 4.58 (s, 2H), 3.62 (s, 3H).

m-Phenylenediamine

¹H NMR (500 MHz, DMSO-d6) δ 6.65 (t, J = 7.8 Hz, 1H), 5.81 (t, J = 2.0 Hz, 1H), 5.79 (d, J = 2.1 Hz, 1H), 5.77 (d, J = 2.1 Hz, 1H), 4.64 (s, 4H).

4-Aminobenzaldehyde

¹H NMR (500 MHz, DMSO-d6) δ 9.57 (s, 1H), 7.60 – 7.46 (m, 2H), 6.72 – 6.54 (m, 2H), 6.29 (s, 2H).

2, 2'-Ethylenedianiline

¹H NMR (500 MHz, DMSO-d6) δ 6.99 (d, J = 7.2 Hz, 2H), 6.89 (t, J = 7.3 Hz, 2H), 6.63 (d, J = 7.7 Hz, 2H), 6.50 (t, J = 7.1 Hz, 2H), 4.86 (s, J = 35.8 Hz, 4H), 2.67 (d, J = 14.7 Hz, 4H).