Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

NaX zeolite framework containing of magnetic MgFe₂O₄/CdO nanoparticles: synthesis, characterization and catalytic performance in the decontamination of 2chloroethyl phenylsulfide (2-CEPS) as a model of sulfur mustard agent

Meysam Sadeghi,^a Saeed Farhadi*^a and Abedin Zabardasti^a

Department of Chemistry, Lorestan University, Khorramabad, 68151-44316, Iran.

Email addresses: farhadi.s@lu.ac.ir; and sfarhadi1348@yahoo.com (S. Farhadi)

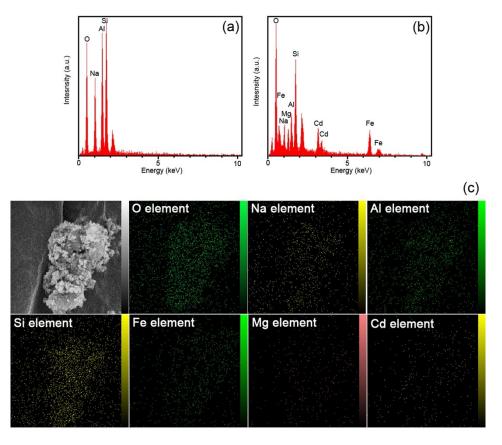


Fig. S1. EDAX analyses of: a) bare NaX and b) NaX/MgFe₂O₄/CdO. c) FESEM micrograph along with the EDAX elemental dot-mappings of the NaX/MgFe₂O₄/CdO.

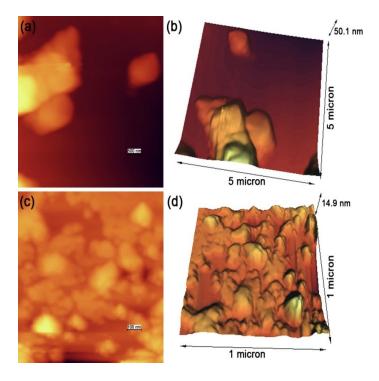


Fig. S2. 2D and 3D AFM micrographs of: a) and b) bare NaX, c) and d) NaX/MgFe₂O₄/CdO.

S1. GC-MS analysis

In order to precisely identify the 2-CEPS degradation products in the reaction with the zeolite NaX/MgFe₂O₄/CdO nanocomposite, a gas chromatography accompanied with mass spectrometry (GC-MS) analysis was utilized. As can be demonstrated in Fig.S3, the five specified peaks at different retention times were observed. The two peaks observed near 5.4 min and 8.3 min can be allocated to the n-heptane solvent and toluene internal standard, respectively. Furthermore, the three other characteristic peaks were recognized approximately 9.5 min to 12.2 min, which were corresponded to the 2-CEPS and its hydrolysis and elimination reaction products. Additionally, the mass spectra of 2-CEPS (m/z values 28, 45, 65, 109, 123, and 172) and its hydrolysis and elimination reaction products, involving 2-hydroxyl ethyl phenyl sulfide (2-HEPS) (m/z values 28, 43, 59, 85, 131, and 154) and phenyl vinyl sulfide (PVS) (m/z values 28, 39, 51, 65, 77, 91, 109, and 135) were clearly detected, respectively.

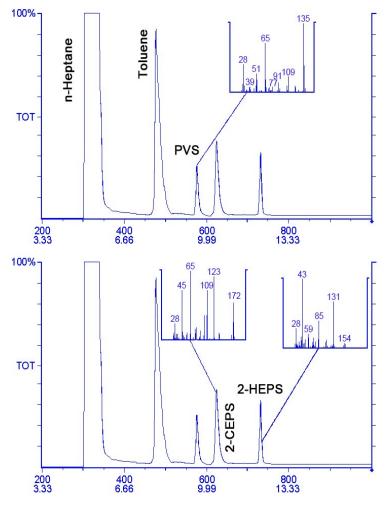


Fig. S3. GC-MS analysis and mass spectra of the 2-CEPS decontamination over the NaX/MgFe₂O₄/CdO.

Element	Line	Atomic%	Weight%
0	Ka	75.72	60.40
Na	Ka	6.68	7.66
Al	Ka	4.03	5.42
Si	Ka	8.36	11.71
Fe	Ka	3.21	8.93
Mg	Ka	0.72	2.13
Cd	La	1.28	3.76
Total	-	100.00	100.00

Table S1. The EDAX analysis data for the NaX/MgFe₂O₄/CdO.

Table S2. The acquired data from the N2-BET, BJH and t plots corresponded to the as-synthesized

catalysts	at	77	K.
-----------	----	----	----

				Total	Average
Samula	a _s , BET	V _{me}	\mathbf{V}_{mi}	pore	pore
Sample	$[m^2 g^{-1}]$	[cm ³ (STP)g ⁻¹]	[cm ³ (STP)g ⁻¹]	volume	diameter
				$[cm^{3}g^{-1}]$	[nm]
zeolite NaX	359.18	1.34	0.11	1.45	12.53
NaX/MgFe ₂ O ₄ /CdO	141.34	0.85	0.01	0.86	8.75

Time Iı	Time Intervals 2-CEPS (A		Toluene Internal Standard	Surface Ratios
(m	in)		(AUC _b)	(AUC _a :AUC _b)
i	0	398623	349175	1.1416
ii	20	190275	274409	0.6934
iii	40	143172	258621	0.5536
iv	60	73390	232764	0.3153
v	80	53659	235700	0.2267
vi	100	46861	459875	0.1019
vii	120	00000	345772	0.0000

Table S3. GC-FID outcomes for the decontamination of 2-CEPS over the NaX/MgFe₂O₄/CdO at different time intervals (optimal conditions; solvent: n-heptane, catalyst dosage: 50 mg).

Table S4. First-order kinetic parameters for the decontamination of 2-CEPS in the presence of different catalysts (optimal conditions; reaction time: 120 min, solvent: n-heptane, catalyst dosage: 50 mg).

	ε	0)	
Catalyst type	Apparent rate constant (k _{app} , min ⁻¹)	Half-life (t _{1/2} , min)	First order kinetic equation $(\ln C_o/C_t = k_{app}t \pm b)$
Without catalyst (blank)	00	00	$\ln C_o/C_t = 00$
bare CdO	0.003	231.00	$\ln C_{\rm o}/C_{\rm t} = 0.003 \text{t-} 0.010$
bare MgFe ₂ O ₄	0.005	138.60	$\ln C_{\rm o}/C_{\rm t} = 0.005 \text{t-} 0.042$
bare NaX	0.007	99.00	$\ln C_{\rm o}/C_{\rm t} = 0.007 {\rm t}{\rm +}0.067$
MgFe ₂ O ₄ /CdO	0.010	69.30	$\ln C_o/C_t = 0.010t + 0.026$
NaX/CdO	0.012	57.75	$\ln C_{o}/C_{t} = 0.012t + 0.012$
NaX/MgFe ₂ O ₄	0.149	46.20	$\ln C_o/C_t = 0.149t \text{-} 0.073$
NaX/MgFe ₂ O ₄ /CdO	0.219	31.64	$\ln C_o/C_t = 0.219t\text{-}0.026$