Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Transition metal phosphide of nickel and cobalt modified $Zn_{0.5}Cd_{0.5}S$ for efficient photocatalytic hydrogen evolution with visible light irradiation

Linying Hu¹, Jing Xu^{*1,2,3}, Yin Liu¹, Sheng Zhao¹

1. School of Chemistry and Chemical Engineering, North Minzu University,

Yinchuan 750021, P. R. China

2. Ningxia Key Laboratory of Solar Chemical Conversion Technology, North

Minzu University, Yinchuan 750021, P. R. China

3. Key Laboratory of Chemical Engineering and Technology, State Ethnic

Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China

Email: wgyxj2000@163.com

Photocatalyst	Electron donor	amount of catalyst (mg)	Light Power	H ₂ evolution (μmol·h ⁻¹)	Ref.
ZnCdS/NiCoP	Na ₂ S/Na ₂ SO ₃	10 mg	5 W (LED)	12.80	This work
NP-CN	CH ₃ OH	50 mg	$\lambda > 420 \text{ nm} (Xe)$	75.00	[1]
g-C ₃ N ₄ -Co ₂ P	TEOA	50 mg	$\lambda > 420 \text{ nm} (\text{Xe})$	28.00	[2]
$Co_2P/ZnIn_2S_4$	Na ₂ S/Na ₂ SO ₃	5 mg	$\lambda > 420 \text{ nm} (\text{Xe})$	39.65	[3]
Co ₂ P/S-CN	TEOA	2 mg		0.40	
Fe ₂ P/S-CN	TEOA	2 mg	$\lambda > 420 \text{ nm} (Xe)$	0.32	[4]
Ni ₂ P/S-CN	TEOA	2 mg		0.42	
NixCo1-xP/rGO/CN	Poly Lactic	10 mg	$\lambda > 420 \text{ nm} (Xe)$	5.80	[5]
MOF-Fe-Ni-P	TEOA	5 mg	$\lambda > 420 \text{ nm} (Xe)$	27.10	[6]
CoP/g-C ₃ N ₄	Methanol	50 mg	UV - Vis (Xe)	52.00	[7]
CoP/BP	Na ₂ S/Na ₂ SO ₃	10 mg	$\lambda > 420 \text{ nm} (Xe)$	2.00	[8]
NiP/Cd _{0.5} Zn _{0.5} S	Na ₂ S/Na ₂ SO ₃	50 mg	$\lambda > 420 \text{ nm} (Xe)$	65.00	[9]
NiO/Ni ₂ P/CN	TEOA	5 mg	$\lambda > 420 \text{ nm} (Xe)$	0.50	[10]

 Table S1. This experiment is compared with the hydrogen production of the previously reported Metal phosphating compounds.

2.

Fig. S1. Hydrogen production rates with different photocatalyst.

1.

参考文献

[1] Wang Y, Li Y, Cao S, et al. Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2019, 40(6), 867-874.

[2] Shen R, Xie J, Zhang H, et al. Enhanced Solar Fuel H₂ Generation over $g-C_3N_4$ Nanosheet photocatalysts by the synergetic effect of noble metal-free Co₂P Cocatalyst and the environmental phosphorylation strategy[J]. Acs Sustainable Chemistry & Engineering, 2018, 6, 816-826.

[3] Zhang Q, Wang X, Zhang J, et al. Hierarchical fabrication of hollow Co_2P nanocages coated with $ZnIn_2S_4$ thin layer: Highly efficient noble-metal-free photocatalyst for hydrogen evolution[J]. Journal of Colloid and Interface Science, 2021, 590(47), 632-640.

[4] Sun Z, Zhu M, Lv X, et al. Insight into iron group transition metal phosphides (Fe₂P, Co₂P, Ni₂P) for improving photocatalytic hydrogen generation[J]. Applied Catalysis B: Environmental, 2019, 246.

[5] Yan J, Sun D, Huang J. Synergistic poly(lactic acid) photoreforming and H_2 generation over ternary $Ni_xCo_{1-x}P$ /reduced graphene oxide/g-C₃N₄ composite[J]. Chemosphere, 2022, 286(3), 131905.

[6] Shumin Li, Jun Tan, Zhejun Jiang, Jin Wang, Zhengquan Li. MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic H₂ and O₂ production[J]. Chemical Engineering Journal, 2020, 384, 123354.

[7] Liu Y, Zhang J, Li X, et al. Graphitic carbon nitride decorated with CoP nanocrystals for enhanced photocatalytic and photoelec trochemical H₂ evolution[J]. Energy Fuels, 2019, 33, 11663–11676.

[8] Yuan Y, Shen Z, Song S, et al. Co-P bonds as atomic-level charge transfer channel to boost photocatalytic H_2 production of Co₂P/black phosphorus nanosheets photocatalyst[J]. ACS Catalysis, 2019, 9, 7801–7807.

[9] Peng S, Yang Y, Tan J, et al. In situ loading of Ni_2P on $Cd_{0.5}Zn_{0.5}S$ with red phosphorus for enhanced visible light photocatalytic H₂ evolution[J]. Applied

Surface Science, 2018, 447, 822–828.

[10] Shi J, Zou Y, Cheng L, et al. In-situ phosphating to synthesize Ni_2P decorated $NiO/g-C_3N_4$ p-n junction for enhanced photocatalytic hydrogen production[J]. Chemical Engineering Journal, 2019, 378, 122161.